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 Abstract  

The goal of this research is to look into the analytic functions for temperature-dependent 

womersley flow of a power-law fluid through a porous material. Bessel functions are a set of 

solutions to a second-order differential equation that can appear in a variety of contexts. 

Mechanics, electrodynamics, elasticity, hydrodynamics, electrical engineering, oscillatory 

systems, electro engineering, and maritime engineering, heat distribution over an area 

(smartphones), pressure vessel design, microphone design, solid state physics, and celestial 

mechanics are some of the applications of Bessel functions. The following tools were used: 

analytical functions theorems, Microsoft Excel, and Maple Software 2018. The physical 

properties that describe a power-law fluid passing through a porous media have a significant 

impact on the flow system's mass transfer. The temperature-dependent parameter should be 

maintained well enough for optimal production, according to field and production engineers. 
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1.0 Introduction  
Many issues in physics, engineering, and other fields lead to 

Bessel equations, both linear and nonlinear. The Bessel 

functions have been known since the 18th century, when 

mathematicians and physicists began to use differential 

equations to describe physical phenomena. The same partial 

differential equations are satisfied by a variety of procedures. 

The Laplace, dAlembert (wave), Poisson, Helmholtz, and heat 

(diffusion) equations were named after them. Bessel employed a 

variety of ways to study these equations (1824).Many technical 

and biological disciplines deal with transport phenomena in 

porous media. Chemical engineering uses convective flow 

through a porous material, particularly in filtration and 

purification operations. It is used in petroleum technology to 

investigate the flow of natural gas, oil, and water through oil 

channels and reservoirs [Batiha et al.,2008; Berenstein & Li, 

2005  and Chevalier et al. 2018) 

 

Although many fluids' non-Newtonian behavior has long been 

understood, the study of rheology is still in its infancy in many 

ways. As a result, new phenomena are discovered on a regular 

basis, and new hypotheses on the subject are proposed. More 

extensive assessments of complex flow and elaborate 

simulations of the structural and molecular behavior that leads to 

non-Newtonian phenomena have become possible thanks to 

advances in computing approaches. Almost every aspect of the 

economy involves heat transport. In all of these cases, one or 

more large quantities (such as mass, momentum, and energy, to 

name a few) are transferred across solid or fluid phases that 

share a porous medium domain (Hayat et al., 2014). 

Pulsatile flow, also known as Womersley flow, is a type of fluid 

flow that has periodic variations. John R. Womersley (1907–

1958) was the first to devise the flow profile. Womersley flow, 

he claimed, may be applied to blood flow in arteries, electrical 

circuits, engines, and hydraulic systems (the circulatory system 

of chordate animals) (as a result of rotating mechanisms 

pumping fluid).A linear homogeneous differential equation with 

full solutions given by Bessel and Laguerre polynomials has 

been the subject of several investigations. However, most of 

these studies don't go into great detail about analytic functions 

for temperature-dependent Womersley flow and power-law fluid 

through a porous media. 
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 Equation (1) is known as the Laguerre polynomials and 

is given as: 

   

    







mme

mtetL

tm

t

m

212

2

1

2

1
,

412412 




    (2) 

 

Equation (2) holds for t  in the complex plane, semi-

axis; and for ,rt  it yield 
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which is true in the complex plane for every 0m . 

  Corollary 1
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be a Bessel function of order  m  as m  approaches infinity and 

holds on a compact disk of Bessel function as t  approaches 

 ,,0   where J  is the Bessel parameter of order  m  given 

below as: 
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Equations (3)-(4) yield    
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as rt  whenever 0m   holds and is given below as : 
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where  
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Corollary 2 

Bernstein function. Let 𝜌(𝑧) be an arbitrary 𝜋𝑚 satisfying the 

condition|𝜌(𝑧)| ≤ 1, where z is complex, and|𝑧| ≤ 1, 

then|𝜌′(𝑧)| ≤ 𝑚, and |𝑧| ≤ 1.Let 𝜌(𝑧) be a 𝜋𝑚 satisfying the 

condition |𝜌(𝑧)| ≤ 1 in −1 ≤ 𝑧 ≤ +1.Then,  
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|𝜌′(𝑧)| ≤ (1 − 𝑧2)𝑚

−
1

2.        (8)  

Function of Weierstrass With a pre-determined accuracy, 

polynomials can approximate a continuous function in a finite 

closed interval. Trigonometric polynomials can be used to 

approximate a continuous, periodic function of a real variable. 

Let 𝜔(𝛿) be the modulus of continuity of given function 𝑓(𝑥) 

continuos in the finite interval[𝑎, 𝑏], where  

𝜔(𝛿) = 𝑚𝑎𝑥|𝑓(𝑥)′ − 𝑓(𝑥′′)|, if|𝑥′ − 𝑥′′| ≤ 𝛿.  

                      (9) 

Then for each 𝑚 we can find the polynomial 𝑝(𝑥) of degree𝑚, 

such that the given interval of length 𝑙 we have |𝑓(𝑥) − 𝑝(𝑥)| <

𝐴𝜔(𝑙
𝑚⁄ )  where 𝐴 is an absolute constant.  

Let 𝑓(𝑥) have a continuous derivative of order 𝜇 in the finite 

interval[𝑎, 𝑏], 𝜇 ≥ 1, and let 𝜔𝜇(𝛿) be the modulus of continuity

 .xf 
 Then, a polynomial 𝑝(𝑥) of degree 𝑚 + 𝜇 exits, such 

that  
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𝑚⁄ )
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where𝐶 is a constant depending only on 𝜇, 𝑙 = 𝑏 − 𝑎, 𝑞(𝑥) is a 

proper 𝜋𝑚+𝜇−1. 𝑓(𝑥) − ∫ 𝑞(𝑡)
𝑥

𝑎
𝑑𝑡, satisfyies Lipschitz  
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𝑚⁄ )
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It yields m , say𝜎𝑥,
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Generalization of growth parameter.𝑃𝑛
𝛼,𝛽

(𝑥)is an extension to 

arbitrary complex values of the parameters𝛼𝑎𝑛𝑑𝛿. It is a 

polynomial in 𝑥, 𝛼𝑎𝑛𝑑𝛽 and 𝜋𝑛 is denoted by 𝑃𝑛
(𝛼,𝛿)

(𝑥) 

(𝑛
𝑙
)𝑃𝑛
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(𝑙,𝛿)(𝑥),where𝑙 is an integer   

1 ≤ 𝑙 ≤ 𝑛, and 

( 𝑛
𝑘−1

)𝑃𝑛−𝑙
(𝑙,𝛿)(𝑥) = ( 𝑛+𝛼

𝑛−𝑘+1
)𝑃𝑘−1

(𝛼,𝛿)(𝑥),   (12) 

𝑛 + 𝛼 + 𝛿 + 𝑘 = 0, where 𝑘 is an integer, 1 ≤ 𝑘 ≤ 𝑛 

Laguerre Polynomials 

Given{𝐿𝑛
(𝛼)

(𝑥)}, for 𝛼 > −1 𝑦 define by the condition of 

orthogonality and normalization as follows:  

∫ 𝑒−𝛼∞

0
𝑥𝛼𝐿𝑛

(𝛼)(𝑥)𝐿𝑚
(𝛼)(𝑥)𝑑𝑥 = ᴦ(𝛼 + 1)(𝑛+𝛼

𝑛
)𝛿𝑛𝑚, where 

𝑛, 𝑚 = 0,1,2 …, coefficient of 𝑥𝑛 in the polynomial 𝐿𝑛
𝛼 (𝑥) of 

degree 𝑛have the sign (−1). 

𝐿𝑛
(0)(𝑥) = 𝐿𝑛(𝑥)    

The temperature-dependent power-law fluid of Womersley flow 

through a porous material is studied using analytic functions in 

this study. As a result, this research will have a favorable 

theoretical impact on the development of modeling strategies 

and procedures for temperature-dependent factors. Kumar 

(2017) looked at the generalized growth of analytic function 

solutions to second-order linear homogeneous partial differential 

equations. In a convergent series of laguerre polynomials, he 

shows the coefficient characterizations of generalized order and 

generalized type of the solution. Variable permeability 

dependent on temperature in the presence of an Arrhenius 

reaction, flow through a porous medium were taken into account 

by Peter et al.,(2019). The model's existence and distinctiveness 

were established in his work. 

In some Banach spaces, Vakarchuk and Zhir (2015) investigated 

the optimal polynomial approximations of full transcendental 

functions of many complex variables. The limiting relationships 

between the stated growth features were discovered. In a finite 

disk, Kumar and Basu (2014) studied the growth and L  

approximation of Helmholtz equation solutions. The effects of 

Joule heating and thermal radiation on the flow of third-grade 

fluid across a radiative surface were investigated by Hayat et al. 

(2014). Zhang and Hu (2012) looked at a linear homogeneous 

partial differential equation with laguerre polynomials 

representing the full solution. In some Banach spaces, the best 

polynomial approximation of the full transcendental functions of 

multiple complex variables. A linear homogeneous partial 

differential equation with full solutions was studied by Wang et 

al.,(2012). 

Vakarchuk and Zhir (2015) studied the best polynomial 

approximations of entire transcendental functions of many 

complex variables in some Banach spaces. The limiting relations 

between the indicated characteristics of growth were obtained. 

Kumar and Basu (2014) considered growth and L  

approximation of solutions of the Helmholtz equation in a finite 

disk. Hayat et al., (2014) examined the effect of Joule heating 

and thermal radiation in flow of third grade fluid over radiative 

surface. Zhang and Hu (2012) investigated on a linear 

homogeneous partial differential equation with entire solutions 

represented by laguerre polynomials. On the best polynomials 

approximation of entire transcendental functions of many 

complex variables in some Banach spaces. Wang et al., (2012) 

examined a linear homogeneous partial differential equation 

with entire solutions represented by laguerre polynomials. Hu 

and Yang (2010) looked at a linear homogeneous partial 
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differential equation with Bessel polynomials as the full 

solution. Hu and Yang (2009) investigated global solutions of 

second-order homogeneous linear partial differential equations 

as follows: 
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These solutions are closely related to Bessel functions and 

Bessel polynomials, according to the findings   ., 2Czt  As a 

result, the goal of this research is to fill in the gaps in the 

literature by using analytic functions to include the temperature-

dependent power-law fluid of Womersley flow through a porous 

media. 

 

2.0 Materials and Methods  

Mathematical Formulation 

The governing equations with the initial circumstances assume 

the following forms, according to (Wang et al., 2012 and 

Kumar, 2017).  For the numerical solution, the researchers used 

Bessel equations, Microsoft Excel, and Maple Software 2018. 
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where equation(14) is called Bessel equation of order , 𝛽𝜖ℂ,

 T  is a true variable (non-negative and temperature-

dependent), ,0
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  ),( tzfu  ( t  

being the time),   ,00 TTTT  0  is a metric that 

measures the constancy of a flow, ,, 2Ctz   ,,  this is a 

true set of positive characteristics, n  is the flow behavioural 

index,   is the density of the fluid,  is the fluid's angular 

frequency, 1n (pseudo-plastic fluids), z being the distance 

from the symmetry axis,  is the dynamic viscosity,  tzu , is 

the dimensional velocity field along the z  axis, K is the 

permeability, p is the pressure, T is the temperature and b  is 

the exponential variation.  

 

Theorem  

Problem (14) has a unique solution 𝑢 = 𝑤(𝑡, 𝑧) on ℂ2 only if, 

and only if, the boundary requirements are met  𝑢 = 𝑤(𝑡, 𝑧) on 

the collection of complex numbers, it has a power series 

expansion. 

𝑤(𝑡, 𝑧) = ∑ 𝑎𝑘𝐿𝐾(𝜆, 𝑡)𝑧𝑘∞
𝑘=0     
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such that 
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where the limit of 𝐼𝑛+𝑥 exists 

𝐼𝑛+𝑥 = {
𝐼𝑛+,       𝑖𝑓𝑥 ≥ 1
0,          𝑖𝑓𝑥 < 1

                                    (20) 

Proof: 

    Following Szego (1975) the properties of Laguerre 

polynomials  𝐿𝑘(𝛿, 𝑡) are given  
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as𝑘 → ∞ satisfies fot 𝑡 in complex domain and for |𝑡| ≤ 𝑟 

equation (21) yields  
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Equation (22) holds as n approaches infinity. 

Let 𝑢 = 𝑤(𝑡, 𝑧) be a unique solution on ℂ2 satisfying problem 

(14) we obtain the power series expansion as follows: 
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where 

𝑓𝑘(𝑡) =
𝜕𝑘𝑤

𝜕𝑧𝑘 (𝑡, 0)                      (24) 

Equations(14)-(24) become    
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Equation (25) is a solution of (14). 

𝑦𝑘(𝛿, 𝑡) = 𝑅𝐿𝑘(𝛿, 𝑡) ln 𝑡 + ∑ 𝑐𝑖𝑡𝑖∞
𝑖=0    

    

where𝑅 ≠ 0 and 𝑐𝑖 are constants.  
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We then write it in compact form 

    00

1 ,, xtxxtfx   (29) 

Theorem 2   (Derrick and Grossman, 1976) 

Let D  denote the region [in  1n dimensional space, one 

dimension for t  and n dimensions for the vector x ]  

,, 00 bxxatt    (30) 

and suppose that  xtf ,  satisfies the Lipschitz condition 

    2121 ,, xxKxtfxtf i    (31) 

whenever the pairs  1, xt  and  2, xt  belong to ,D  where iK  

is a positive constant. Then there is a constant 0i  such that 

there exists a unique continuous vector solution  tx   of the 

system of solution (28) in the interval itt  0 . 

Alternatively, if njixf ji ,........2,1,,   they go on D   

indefinitely, they're bound together on D , and conditions (30) 

and (31) are met.  
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Theorem 3 

Let 𝐷 be the domain of existence of f  and   Let 

𝑐, 𝑣, 𝑘2, 𝛽1𝑎𝑛𝑑𝐷𝑎 are positive real constants other than zero. 

Then equation (14) satisfying the boundary condition has a 

unique solution in the domain 𝐷. 

For a regular singularity point t = 0, equation (14) becomes 

  01
2

2

1 
Da

f
c

dz

fd

dz

df
z n 

 (32)
 

  












Da

f
c

dz

df
z

dz

fd n
 1

1

1

2

2

  

    
 

Let 𝑥1 = 𝑧, 𝑥2 = 𝑓, 𝑥3 = 𝑓 ′, 𝑥4 = 𝜃 

𝑥1
′ = 𝑓1( 𝑥1, 𝑥2, 𝑥3, 𝑥4)     

    

𝑥2
′ = 𝑓2(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥3 

𝑥3
′ = 𝑓3(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑓′′ 

𝑥4
′ = 𝑓4, (𝑥1, 𝑥2, 𝑥3, 𝑥4) 

Satisfying  

0 ≤ 𝑥1 ≤ ∞ 

−𝑘1 ≤ 𝑥2 ≤ 𝑘1 

−𝛼1 ≤ 𝑥2 ≤ 𝛼1 

−𝑘2 ≤ 𝑥4 ≤ 𝑘2                              (33) 

  Then, 

0
1

2 

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x

f
, 0

2

2 
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

x

f
, 0

3

2 




x

f
, 0

4

2 




x

f
          (34) 
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
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                          (35) 
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kDax
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 





                        (36) 
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
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
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Da
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Da

x
cxx
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f 1

1

3
31

14

3 11





         

k  (max) 









Da

k
c 1

1

1


    

      









 

Da

k
ck n 11

1

1

1



                      (37) 

k , since  ,,, 1ck  and Da  are positive real 

constants other than zero. Therefore, k  exists. Hence, 

3,2,1,, 



ji

x

f

j

i are Lipschitz continuous and are 

bounded in D  for each bounded 1x  and 2x . As a 

result, the problem (37) has a unique solution and it is 

well posed. This completes the proof.   

 

3.0 Results  

 

From Equation (30) let 1n , 0  and c  is negligible 

equation (30) becomes  

  01
2

2

01 
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dz
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dz

df
z n                     (38) 
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                                               (39) 

Equations (38)-(39) yield 
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                                                      (40) 

Let 22  mnmn  

  0
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1
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m
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m

m

m
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m za
Da

zmazammb   

                                                                   (41) 

The first term is equal to zero for 1,0  mm ,  in the 

first sum and m  equal to zero in the second sum 

when 2m , we obtain  

  01 
Da

a
vmaambm m

mm                              (42) 
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Let  bv   ,   equation (42) becomes             
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                                             (47)
 

For 10 a , the Bessel function of order zero is defined by the 

preceding equation. 

It belongs to the first category and is identified by  zJ , 

regardless of the parameter approaches 

  












42
cos

2 


z

z
zJ                        (48) 

Asymptotically as t approaches infinity  zJ 0 approaches zero 

and  zJ 0  contains an endless number of zeros, which is more 

similar to 









4
cos


z  for large values of .z  As a result, 

equation (49) is formed. 
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Using F solve in Maple Software 2018 equation (49) yields 
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Figure 1: Graph of the velocity function f for   various values 

of temperature -dependent   parameter 
1  and Darcy 

number, .1.0Da  
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Figure 2: Graph of the velocity function f  for   various values 

of Darcy number, and temperature -dependent parameter 

.3.01   

4.0 Discussions  

The flow of a Womersley power-law fluid through a porous 

media was investigated, as well as the dimensionless boundary 

conditions, which were then numerically solved using an 

algorithm in the symbolic computer algebra program Maple 18 

software. Figures 1 and 2 depict the findings of this investigation 

graphically. The effect of temperature-dependent parameter, 

Darcy number, and power-law index on the flow of Womersley 

power-law fluid through a porous material is revealed in this 

study.When a Pseudoplastic fluid has temperature-dependent 

parameters and a power-law index, the flow decreases as the 

temperature-dependent parameter increases.The Darcy number is 

useful in determining the physical principles that control power-

law fluid flow in porous media. With increasing porosity and 

power indexes, the temperature-dependent parameter rises. 

 

5.0 Conclusions  

The following conclusions can be drawn from the study's 

findings: With each rise in a temperature-dependent parameter in 

the flow system, the energy transfer increases, reducing the mass 

flow in the system. The physical properties that describe a 

power-law fluid passing through a porous media have a 

significant impact on the flow system's mass transfer. Due to 

space and time constraints, the study of Womersley flow of a 

power-law fluid through a porous medium is inexhaustible in a 

single work. The temperature-dependent parameter should be 

maintained well enough for optimal production, according to 

field and production engineers. Parts of the findings are also 

expected to serve as the foundation for more mathematical 

modeling and study of Bessel's equations in the future. 

The outcome of this research demonstrates a clear and improved 

understanding of Womersley flow of a power-law fluid through 

a porous material, with the following specific contributions to 

knowledge:  

1. Analytic functions are used to study the temperature-

dependent Womersley flow of a power-law fluid through a 

porous media.  

2. The existence and uniqueness of model solutions were 

specified as criterion.  

3. The model's impacts of the linked parameter are calculated. 

4. It is noticed that as the temperature-dependent parameter is 

increased, the fluid velocity increases steadily. 
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