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 Abstract  

This paper presents a one-dimensional single pressure model representing the system of the two-

phase flow for predicting and modelling the flow physics of transient two-phase flow. This model 

consists the interfacial interactions properties of the fluids at the interface and also with walls of 

the pipe. The governing equations were solved numerically using the implicit Steger-Warming 

flux vector splitting method. Numerical results on air-water compressible flow problems are 

preformed and analyzed. A numerical computation for test case problem separation was 

evaluated. The results for the liquid fraction and velocity for the separation case was presented 

and shows good agreement with analytical solution. The discretization for various cells and time 

evolution are presented that give an insight for the convergence and stability of the numerical 

scheme for on the test case.  
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1.0 Introduction  

The two-phase gas-liquid two-phase flow is considered to be the 

most important aspect of multiphase flow for its widely application 

in industries, such as in the production and transportation of oil and 

gas in the petroleum industry. It also plays a role in evaporation, 

boilers, condensers, submerged combustion systems, sewerage 

treatment plant, air condition and refrigeration plant, meteorology 

and other natural phenomena.  

In many flow processes of interest for engineering, environmental, 

and biological systems are mostly considered to be two-phase flow 

in nature or include at least some features of two-phase flow.  This 

is why enormous attention has been drawn to two-phase flow 

during the last decades. Interest on two-phase flow has been keen, 

though, mathematical modelling on the two-phase flow are 

relatively rare and are mostly limited to single phase gas or the 

homogeneous two-phase flow model then later dealing with more 

complex two-phase flow under heterogeneous and non-equilibrium 

conditions. 

Recently, the numerical simulation of the wave propagation 

processes on two-phase flow is based on a newly developed 

hyperbolic two-fluid model which seems to allow an algebraic of 

the complete eigenspace (eigenvalues and related eigenvectors) 

(Stadtke, 2006). A two phase flow based on the eight equation 

model of two-pressure model was developed by Ransom and Hicks 

(1988) a model used by Baer and Nunziato (1986) in their work. A 

modification of the model was proposed by Drew and Passman 

(1999) and Gonthier and Powers (2000). In their work, the model 

consisting of seven partial differential equations: one representing 

the transport equation for the volume of fraction, two describing 

the mass of each fluid, two for the momentum of each fluid and 

two for the energy of each fluid. An approach for predicting two 

fluid model of two phase flow phenomenon for the determination 

of computational efficiency in two phase modelling was 

investigated (Coquel et al., 1997). The  method of upwind scheme 

based on finite volume method was adopted for the numerical 

solution. Saurel and Abgrall (1999) proposed a model and solution 

method for two phase compressible flows for mixture and 

multifluids flows. The multiphase Godunov method were used to 

solve the system at each mesh point and also simulate interfacial 

problems between pure fluids and multiphase mixtures for several 

test cases where fluids have compressible behaviour as well as 

incompressible phases. A simulation of multifluids compressible 

flows using a simple second order and fully Eulerian numerical 

method governed by the Stiffened gas equation of state was 

presented by Saurel and Abgrall (1999). The method was used to 

compute a strong shock wave propagating in a liquid with a gas 

cylinder. Multiphase flow modelling using homogeneous 

equilibrium model (HEM) and Riemann solvers was also studied 

by Shyue Keh-Ming (1999). In their work, a numerical 

computational for air and water flow using a hybrid equation of 

state based on a combination of perfect gas law to model the gas 

phase and Stiffened equation of state or van der Waals equation of 

state to model the liquid phase. The numerical resolution of 

multicomponent problems with a Van der Waals fluid was 

extended to a more general case with real material characteristics 

by a Mie Gruniesen equation of state Shyue (2001). A simulation 

of one dimensional two-phase flow two-fluid model in pipelines 

where pressure relaxation term was added (Loillier et al., 2005). 

The systems of equations consist of five-time dependent partial 

differential equations solved explicitly by a finite volume approach 

based on the AUSMDV. A numerical computation on air-water 

flow problems were performed an analysed. Gessner and Barbosa 

(2009) carried out a numerical study for solving two-phase 

homogeneous transient flows based on the split coefficient matrix 

(SCM). The numerical modelling for slug initiation and growth in 

horizontal ducts using two-fluid model of Pressure Free Model 

(PFM) (Ansari & Shokri, 2011). The transient two-fluid equations 

were solved numerically by a class of high resolution slug 

capturing methods. 

Steger and Warming (1981) developed a method for splitting the 

system of equation into component of the same characteristics 

behaviour for a one-dimensional inviscid equation of gasdynamics. 

The explicit and implicit numerical algorithms were devised and 

tested for the split system of equations. A transient two-phase flow 

homogeneous equilibrium model solved using the splitting method 

of one sided spatial difference operator of finite difference equation 

(Liou & Steffen, 1991). A numerical approximation of two phase 

models of non-equilibrium two-phase flows of six balance 

equations using the splitting scheme for the system of equations 

was presented by Rascle and EL Amine (1997). The kinetic upwind 

scheme was considered, the algorithm were used to compute the 

flow regimes evolving from mixture to single phase flows and vice 

versa. A numerical test such as phase separation and phase 

transition were performed. A compressible transient two phase 

flow model for the simulation of pipeline flow (Daniels et al., 

2002). The numerical computation for the transient flow for both 

vertical and horizontal two phase flows on air and water 

sedimentation flows and a two phase shock tube problem using the 

method of implicit solvers. The Steger-Warming flux vector 

splitting approach and the NND scheme for studying the 

hyperbolic partial differential equation of Euler equation (Xinfeng 

et al., 2013). The gas-liquid-solid three phase mixed flow for the 

coupling hydraulic transient problems in pipeline (Chen, et al., 

1998). The problem was numerically solved using a finite 

difference scheme based on the Steger and Warming flux vector 

splitting. The flux subvectors were discretized by the Lax-Wedroff 

central difference scheme and the Warming-Beam upwind 

difference scheme with second-order precession in both time and 

space. 

An idea of two-phase compressible flow is based on the 

consideration and averaging of balance conservation for each 

phase. With this, the two-phase flow can be said to be an averaged 

continuum whereby the interfacial interactions was considered 

(Drew & Passman, 1998). A single pressure two-fluid model  of 

two-phase flows describe more details the two-phase two-fluid 

model which consists of the interfacial interactions with an extra 

differential terms to the governing equations, such as the virtual 

mass and interfacial pressure forces (Omgba, 2005; Stadtke & 

Franchello, 2001). The addition of the differential terms modified 

the system of governing equations of two-phase two-fluid model to 

give a real eigenvalues and a complete set of linearly eigenvectors 

and hence makes it hyperbolic.  

In this paper, the transient two-phase flow one dimensional single 

model is considered. This model however, represents the 
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mathematical modelling of the two-phase flow system. The 

numerical simulation on water faucet and separation test case will 

be used to evaluate the stability, accuracy and convergences of the 

numerical solution of implicit Steger Warming flux vector splitting 

method. 

2.0 Mathematical Analysis 

The two-fluid model is represented by two sets of conservation 

equations for the balance of mass, momentum and energy for each 

of the phases. The one-dimensional form of the model is obtained 

by integrating (area averaging) the flow properties over the cross-

sectional area of the flow. The transfer of momentum and energy 

between the walls and the fluids are included in the source terms in 

the equations. Moreover, the dynamic interaction between the 

phases across the interfaces is modeled using inter-phase forces 

that appear as source terms in the transport equations.  

The present study considered the transport equations for the 

transient flow of the one-dimensional single pressure two-fluid 

model of conservation mass and momentum equations for gas and 

liquid phases. The flow is assumed to be isothermal with no mass 

and heat transfer conditions. The model description is represented 

in Figure 1 for the direction of the coordinate axes. Following these 

axes and the assumptions above, the governing equations is 

presented as follows; 

 

Figure 1 Pipe cross-section and side view of two-phase flow in a 

pipe with relevant properties. 

The mass conservation equation for the gas phase is expressed as: 

  
𝜕𝜌𝐺𝛼𝐺

𝜕𝑡
+

𝜕𝜌𝐺𝛼𝐺𝑉𝐺

𝜕𝑥
= 0                      (1) 

The mass conservation equation for the liquid phase is; 

 
𝜕𝜌𝐿𝛼𝐿

𝜕𝑡
+

𝜕𝜌𝐿𝛼𝐿𝑉𝐿

𝜕𝑥
= 0         (2) 

The momentum conservation equation for the gas phase is;           

𝜕𝜌𝐺𝛼𝐺𝑉𝐺

𝜕𝑡
+

𝜕𝜌𝐺𝛼𝐺𝑉𝐺
2

𝜕𝑥
= −𝛼𝐺

𝜕𝑃

𝜕𝑥
− 𝛼𝐺𝜌𝐺𝑔

𝜕ℎ𝑙

𝜕𝑥
cos𝜃 − 𝛼𝐺𝜌𝐺𝑔sin𝜃 −

𝜏𝐼𝑆𝐼 − 𝜏𝐺𝑆𝐺                 

 (3) 

The momentum conservation equation for the liquid phase is; 

𝜕𝜌𝐿𝛼𝐿𝑉𝐿

𝜕𝑡
+

𝜕𝜌𝐿𝛼𝐿𝑉𝐿
2

𝜕𝑥
= −𝛼𝐿

𝜕𝑃

𝜕𝑥
− 𝛼𝐿𝜌𝐿𝑔

𝜕ℎ𝐿

𝜕𝑥
cos𝜃 − 𝛼𝐿𝜌𝐿𝑔sin𝜃 +

𝜏𝐼𝑆𝐼 − 𝜏𝐿𝑆𝐿        

 (4) 

where k , k  and kV  represents the density, volume fraction and 

velocity of phase k (G is the phase and L is the liquid phase). The 

variable k  and i  are the wall momentum and interfacial 

exchange terms,   is the angle of inclination to the horizontal and 

P denotes the pressure.  

2.1 Closure relations 

The set of the governing equations are completed by including the 

closure term which are added to the source term in the momentum 

equations. The liquid pressure correction term is represented 

as; 𝑃𝑐

𝜕𝛼𝐿

𝜕𝑥
= 𝛼𝐿𝜌

𝐿
𝑔

𝜕ℎ𝐿

𝜕𝑥
cos𝜃, while the gas pressure correction term 

is neglected i. e 𝛥𝑃𝐺𝑖 = 0 ( Drew & Passman, 1999) and kwnown 

as the single pressure model.  

The wall shear stress and interfacial shear stress for both phases k 

(G-gas and L-liquid) given as (Bonizzi, 2001);  

𝜏𝑘 =
1

2
𝑓𝑘𝜌𝑘𝑉𝑘|𝑉𝑘|; 𝜏𝐼 =

1

2
𝑓𝐼𝜌𝐺(𝑉𝐺 − 𝑉𝐿)|𝑉𝐺 − 𝑉𝐿|. 

2.2  Method of Solution 

The equations in (1)-(4) can be rewritten to a more compacted 

matrix form as; 

            
𝜕Q

𝜕t
+

𝜕𝐸(Q)

𝜕𝑥
= 𝐻

𝜕Q

𝜕𝑥
+ 𝑆         

 (5) 

where Q is a vector of unknowns, F is a physical flux vectors, H 

contains non-conservative terms that exit in the model and S is a 

vector of algebraic source terms given respectively as follows: 

Q=
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L

c

L

H P
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


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 
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 =
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− 
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0

0
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S
I I I

I I I

 
 
 =
 − +
 

− +  

   (6)  

 

2.3    Implicit Steger-Warming Flux Vector Splitting Scheme 

The governing equations for the one dimensional single pressure 

two-fluid model are solved numerically which require numerical 

schemes by the finite difference method of discretization 

(Anderson, 1995; Hoffman & Chaing, 2000). The implicit Steger-

Warming flux vector splitting method (FSM) is used as the 

numerical scheme. 

The flux vector E and the flux Jacobian matrix A are splitted as 

E E E+ −= +  and A A A+ −= +  respectively. 

A backward difference approximation is used for the positive terms 

and a forward difference approximation is used for the negative 
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terms. Hence, considering the first-order approximations, the 

following finite difference equation is obtained; 

[𝐼 +
𝛥𝑡

𝛥𝑥
{(𝐴 𝑖

+ + 𝐴𝑖−1
+ + 𝐴𝑖+1

− − 𝐴𝑖
−) {−𝛥𝑡𝐵𝑖}}]𝛥𝑄 

= −𝛥𝑡
1

𝛥𝑥
[(𝐸𝑖

+ − 𝐸𝑖−1
+ + 𝐸𝑖+1

− − 𝐸𝑖
−) + 𝑆𝑖]     (7) 

Rearranging the above equation in terms of the grid point i  for the 

Jacobian matrix A (or say for the right hand side of equation (7) we 

get;− (
𝛥𝑡

𝛥𝑥
𝐴𝑖+1

− ) 𝛥𝑄i-1 + [𝐼 +
𝛥𝑡

𝛥𝑥
(𝐴 𝑖

+ − 𝐴𝑖
−) −𝛥𝑡𝐵𝑖]𝛥𝑄i 

+ (
𝛥𝑡

𝛥𝑥
𝐴𝑖+1

+ ) 𝛥𝑄i+1 ( )1 1i i i i i

t
E E E E tS

x

+ + − −

− +


= − − + − +


  (8) 

The linearized equation of (8) is expressed as;  

− (
𝛥𝑡

𝛥𝑥
𝐴𝑖−1

0 ) 𝑄⌢𝑖−1
𝑛+1 + (1 +

𝛥𝑡

𝛥𝑥
(𝐴𝑖

0+ − 𝐴𝑖
0−) −𝛥𝑡𝐵𝑖

0𝑄⌢𝑖
𝑛+1) +

(
𝛥𝑡

𝛥𝑥
𝐴𝑖+1

0− ) 𝑄𝑖+1
𝑛+1 = 𝑄⌢𝑖

𝑛      (9) 

3.0 Results and Discussion  

The numerical scheme of Steger Warming flux splitting method 

described earlier has been applied to the two-fluid model to analyse 

the numerical effects for various mesh refinements that is 

discretization of cells and time evolutions for two test cases such 

as the water faucet problem and phase separation problem. 

3.1 Phase Separation test case 

The phase separation flow test case reported by Paillere, Corre [32] 

and Städtke, Franchello (1997), a mixture consisting of air and 

water separated under the action of gravity.  A vertical tube of 

length 7.5L m=  is considered, with the coordinate system taking 

such that 0x =  corresponds to the top of the vertical tube, and 

7.5x =  corresponds to the bottom of the tube. The boundary 

conditions with both ends of the tube closed that is 0 0 0l gV V= =  

m/s are applied. The pressure at the initial is 
51. 10P =  Pa and 

has a liquid volume of fraction 0.5l = . At 0t s= , the phases 

begin to separate due to the influence of gravity, which is 

considered in the source term. An approximate analytical solution 

for the liquid fraction and velocity was formed assuming that the 

liquid accelerated by the influence of gravity only, until it is 

abruptly brought into stagnation at the lower part of the tube (Evje 

& Flattern, 2003). A mesh of 100 cells is used, and the calculation 

is carried out until steady state is reached. The phases should be 

fully separated in the idealized case. The phase separation test case 

is shown in Fig. 11. 

The liquid fraction and liquid velocity for time at 0.6t s=  are 

compared to the analytical solution in order to check the accuracy 

and convergence of the numerical scheme and are presented in 

Figure 3 &4. 

3.2 Time Evolution 

The time evolution for the liquid fraction, void fraction and liquid 

velocity are presented in Figure 5-8. The time variation shows that 

the two volume fraction fronts at the top and bottom of the pipe. 

These fronts meet slowly and a stationary state is then formed, both 

phases are fully separated. It is observe that a steady state occurs 

after 0.8s, and then later part the volume of fractions results are 

thereby overlapping.  

 

 

Figure 2 The phase separation test case 

 

Figure 3 Analytical solution for liquid fraction at t=0.6 s and 100 

cells Steger Warming flux vector splitting scheme 

 

Figure 4 Analytical solution for liquid velocity at t=0.6 s and 100 

cells compared to the Steger Warming flux vector splitting scheme 
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Figure 5 Void fraction with a function time evolution using 

Steger Warming flux vector splitting scheme. 

 

Figure 6 Time evolution for the liquid fraction using Steger 

Warming flux vector splitting scheme 

 

Figure 7 Time evolution for the gas velocity for separation case 

problem Steger Warming flux vector splitting scheme 

 

Figure 8. Time evolution for the liquid velocity for separation case 

problem using Steger Warming flux vector splitting scheme. 

3.3 Mesh Refinement 

Figure 9-12 shows the results for different discretization sizes with 

25, 50, 100 and 200 cells for the liquid fraction, liquid velocity and 

gas velocity at time 0.6t s=  using Steger Warming flux splitting 

scheme. 

 

Figure 9 Liquid velocity for different cells at t=0.6s using Steger 

Warming flux vector Splitting Scheme. 

 

Figure 10 Mesh refinement for the liquid fraction at time t=0.6s 

using Steger Warming flux vector splitting scheme 
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Figure 11 Mesh refinement for the void fraction at time t=0.6s for 

separation case problem using Steger Warming flux vector splitting 

scheme 

Figure 12 Mesh refinement for the gas velocity at time t=0.6s for 

separation case problem using Steger Warming flux vector splitting 

scheme. 

5.0 Conclusions  

A one-dimensional single pressure two-fluid model was 

considered that described mathematically a system of partial 

differential equations of two-phase flow for predicting and 

modelling the flow physics of two-phase gas-liquid flow in a pipe. 

The model is obtained by integrating (area averaging) the flow 

properties over the cross-sectional area of the flow. The dynamic 

interaction between the phases across the interfaces is modeled 

using inter-phase forces that appear as source terms in the transport 

equations. This makes the model capable of predicting the flow 

physics in two-phase flow systems. The transient one dimensional 

two fluid equations were solved numerically by the implicit Steger-

Warming flux vector splitting technique. Numerical results on air-

water compressible flow problems are preformed and analysed. A 

numerical computation for test case problem of separation was 

performed. The results for the comparison of the numerical scheme 

to the analytical solution was presented liquid fraction and likewise 

liquid velocity and void fraction for the separation case was also 

presented and shows good agreement with analytical solutions. The 

discretization for various cells and time evolution are presented 

that give an insight for the convergence and stability of the 

numerical scheme on the test case. 
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