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 Abstract  
The study explores the crucial role of statistics in data science and analytics, particularly in 

statistical concepts and methods from the basis of data analysis, machine learning, and 

decision-making. The importance of statistical thinking in extracting insight from data and 

making informed decisions is also highlighted. Real-life survival data consisting of 203 

tuberculosis patients with six variables, including age, gender, marital status, treatment 

(drug), censored (outcome), and time in days, is used to validate the study. Different analyses 

are carried out using R and Python software to depict summary statistics, plotting raw data, 

histograms, and percentages in pie plots, survival times for four different treatments include: 

Rifampicin, Isoniazid, Levofloxacin, and Bedaquiline, CoxPH model is fitted, and the Kaplan 

Meier survival curve for the treatment. The results reveal that Bedaquiline is given to 3 

patients with no right-censored patient recorded, Levofloxacin was administered to 4 patients, 

only 1 is right censored, Isoniazid is administered to 36 patients, 8 are right censored, and 

Rifampicin was applied to 160 patients, and 8 are right censored. However, Rifampicin 

exhibits the highest survival rate, followed by Isoniazid, while Levofloxacin and Bedaquiline 

indicate greater uncertainty through their curves and shaded regions in the survival curve. 
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1.0 Introduction  
    In today's data-driven world, Statistics play a 

central role in data science and quantitative analysis, 

providing essential tools for modeling, inference, 

and interpretation of complex phenomena. This 

study reinforces the applicability of statistics by 

exploring a clinical survival dataset of 203 

tuberculosis patients, aiming to identify key factors 

influencing the effectiveness of four different 

treatments: Rifampicin, Isoniazid, Levofloxacin, 

and Bedaquiline. Additionally, tuberculosis 

infection and disease are treated with standard and 

special antibiotic drugs listed above. These drugs 

have to be taken daily for two to six months non-

stop without medical advice. (Li et al., 2017, Mase 

and Chorba, 2019, (Bakare et al., 2022, and (Al-

Karawi, Kadhim and Kadum, 2023). Several 

research studies are ongoing to combat tuberculosis 

globally, and these have saved about 79 million lives 

since 2000. (WHO, 2025). Recently, tuberculosis 

has become one of the world's leading causes of 

death after COVID-19, with a total of 1.25 million 

people dying from tuberculosis in 2023. However, 

the epidemic is among the health focus of the United 

Nations Sustainable Development Goals (SDGs) to 

eradicate by 2030. (Duarte et al., 2021, Gill et al., 

2022, Rikochi, Musa and Olowolafe, 2023 and 

WHO, 2025). The analysis is conducted using 

advanced statistical techniques, such as the Cox 

Proportional Hazards Model (CoxPH) and Kaplan-

Meier survival curves, to compare treatment 

efficacy and provide insights that can aid clinical 

decision-making. The chosen methods were selected 

for their capacity to model time-to-event data (in this 

case, survival time) and to handle censored data, a 

common feature in survival studies. The Kaplan-

Meier curve was employed to estimate the survival 

function over time, while the CoxPH model was 

used to assess the impact of covariates on 

proportional hazards. In literature, different authors 

have researched and modelled on tuberculosis 

disease data (clinical data) in various ways such as 

parametric model by (Daniel, Lasisi and Banister, 

2020), modeling as survival data by (Collett, 2023), 

a Cox proportional hazards by (Rexy and Rayalu, 

2024), exponential and Weibull ATF models by 

(Akor et al., 2025) among others. The results 

indicate that Rifampicin and Isoniazid exhibit the 

best survival rates, with Rifampicin standing out as 

the most effective treatment, given the relatively low 

number of censored patients compared to other 

treatments. In contrast, Levofloxacin and 

bedaquiline displayed greater uncertainty in the 

survival curves, suggesting the need for larger 

sample sizes for validation. Some tools in statistics, 

but useful in data science and analytics, are R, 

Python, SPSS, SAS, Excel, and so on.  

 

 

 

1.1 Survival Analysis 

 

Survival analysis is one of the most significant 

applications of statistics in clinical trials, medical, 

and health sciences. It is also essential for modeling 

time-to-event data in various fields, like healthcare, 

engineering, finance, and so on. Estimating 

parameters from survival data, such as the Weibull 

Gamma and other distributions, is utilized instead of 

the normal distribution, allowing for modeling 

hazard rates and survival probabilities and 

facilitating predictions and decision-making (Klein 

et al., 2013). When describing survival statistics, the 

terms survival function, hazard function, and 

cumulative hazard function are often employed. 

Most people know that the proportional hazard 

model examines the connection between survival 

and the variables (Cox, 1972). It is often used in 

clinical trial analyses. The baseline hazard is a 

constant quantity that is unaffected by the variables 

and corresponds to an intercept. Using maximum 

likelihood, inferences about the baseline risks and 

the effects of explanatory factors are drawn from 

lifetime data in survival analysis (Groeneboom, 

Jongbloed, and Witte, 2020).  
 

1.2 Tuberculosis (TB) 
 

Tuberculosis (TB) remains a global public health 

problem and one of the top ten leading causes of 

death worldwide, with developing countries bearing 

the highest burden (WHO, 2022). In 2018, Nigeria 

was listed as first in Africa and sixth among the 30 

countries with the highest TB burden (WHO, 2022). 

Unfortunately, the problem of TB in Nigeria has 

been complicated by the emergence and spread of 

drug-resistant TB and a high burden of HIV/AIDS 

NTBLCP, 2017;  WHO, 2018). Here, we fit real-life 

survival data on tuberculosis to establish our facts 

using both R and Python software as statistical tools. 

The motivations for this are as follows: it helps in 

extracting insight from the data, making informed 

decisions, identifying patterns and trends, and 

quantifying uncertainty.  

 

The paper is divided as follows: Section two 

contains the material and methods. Section three 

contains the analysis of data and interpretation, 

while section four contains the concluding remarks.  

 

2.0 Materials and Methods  

2.1 Survival Function 
 

Survival analysis depends on the survival 

function 𝑆(𝑡), and it is known as the complementary 

cumulative distribution function. This function is a 

property of any random variable that maps a set of 

events, usually associated with mortality or failure 

of some system, onto time. It captures the 
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probability that the system will survive beyond a 

specified time.  

Let T represent survival time. T is regarded as a 

random variable with a cumulative distribution 

Function: 

 

                      𝐹(𝑡) =  𝑃(𝑇 ≤  𝑡)                                  (1)

  

and probability (event) density functions 𝑓(𝑡), 

𝑓(𝑡) = 𝐹′(𝑡). Given the probability that the event 

has occurred by duration t:  

  

         
0

( )
( ) lim t

p t T t t
f t

t
 →

  + 
=


                

(2) 

 

The survival function, denoted as 𝑆(𝑡), is defined as 

follows for a random variable T representing 

survival time: 

 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡)                              (3) 

 

where,  𝑓(𝑡) and  𝐹(𝑡) in equations (1) and (2) above 

represent the probability density and cumulative 

density functions of the specific distribution under 

consideration. The expression in equation (3) is 

survival time that quantifies the probability of 

survival beyond time t. It is important to note that 

𝑆(0)  =  1, and as time 𝑡 approaches infinity, 𝑆(𝑡) 

approaches 0. The survival function typically forms 

a decreasing curve and can be estimated using 

methods like the Kaplan-Meier method discussed in 

section 2.4 below. The function can be used for two 

basic reasons: (i) can determine a patient’s 

probability of surviving to time t, and (ii) can 

determine the % that survive to time t. 

 
 

2.2 Hazard Function 

 

In a set comprising individuals susceptible to a 

specific event, denoted as 𝑅(𝑡) (the risk set), or 

individuals who have not yet encountered the event 

by time t, the probability of an individual within this 

risk set facing the event within a short time interval 

(𝑡, 𝑡 +  ∆𝑡) is represented as  ℎ(𝑡) ∆𝑡 Consequently, 

the hazard rate is formally defined as: 

 

ℎ(𝑡) = lim
∆𝑡→0

1

∆𝑡
𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 ≥ 𝑡)             (4) 

 

where T is non-negative and represents the future 

lifetime of an individual. In contrast to the survival 

function, which consistently exhibits a decreasing 

trend for all forms of survival data, the hazard 

function can assume various non-negative shapes, 

and its specific shape depends on the characteristics 

of the given survival data. Alternatively, the hazard 

function can also be expressed about the cumulative 

hazard function, denoted as 𝐻(𝑡). 

 

ℎ(𝑡) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
                                                (5) 

 

The term "cumulative" is employed because the 

function represents the accumulation of hazard over 

time.  
 

2.3 Relationship Between Hazard and 

Survival Function 

 

The relationship between them is obtained from (4) 

and is given by 

 

h (t)  =  H0(t)  =
1

𝑆(𝑡)
lim

∆t→0

S (t)  −  S (t + ∆t)

∆t
 

=  −
𝑆′(𝑡)

𝑆(𝑡)
 

 

𝐻(𝑡) =
𝑆′(𝑡)

𝑆(𝑡)
− 𝑙𝑛[𝑆(𝑡)]                                        (6) 

 

where 𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
 and 𝐻’(𝑡)  denotes the 

first derivative of the cumulative hazard function.  

 

2.4 Kaplan Meier Estimator 

 

The Kaplan-Meier estimator, alternatively known as 

the product limit estimator, is introduced by Kaplan 

and Meier in 1958. It offers a straightforward and 

rapid way to estimate the survival function, even 

when censoring is involved. It relies on the precise 

failure times (Kaplan and Meier, 1958; Collet, 

2013), (Lowry and Kaplan, 2016 and Hanagal, 

2011).  

 

2.4.1 The Cumulative Hazard Function 

 

Taking from expression (6), if 𝑆’(𝑡) is the Kaplan-

Meier estimate of the survival function, then the 

following equation is an estimate of the cumulative 

hazard function: 

 

𝐻(𝑡) = ∑ 𝑙𝑛 (1 −
𝑑𝑖

𝑛𝑖
)𝑚

𝑖=1                                       (7) 

 

where 𝑑𝑖 is the number of events at time 𝑡𝑖, and 𝑛𝑖 

is the number of individuals at risk (not censored) 

just before time 𝑡𝑖. 

Then, from the Taylor series expansion 𝑛 (1 −

𝑑𝑖

𝑛𝑖
) =

𝑑𝑖

𝑛𝑖
− [

𝑑𝑖

𝑛𝑖
]

2

+ ⋯ ≈ −
𝑑𝑖

𝑛𝑖
 by ignoring higher-

order terms. The estimate of the cumulative hazard 

function is, therefore, given as:  

 

𝐻(𝑡) = ∑
𝑑𝑖

𝑛𝑖

𝑚
𝑖=1                                                     (8) 

 

2.5 The Cox-proportional hazard model 
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The Cox-proportional hazard model is a broader and 

more versatile approach to modeling hazard and 

survival functions, as it does not impose 

distributional assumptions on the baseline hazard. 

This model was developed by Cox in 1972. It is in 

the form: 

 

ℎ(𝑡|𝑋) = ℎ0(𝑡)𝑒𝑥𝑝(𝑋𝑇𝛽)                                 (9) 

 

The assessment of how the covariates influence 

survival time is quantified using the hazard ratio, 

denoted as HR. Let's consider a categorical variable 

with two levels: 𝑋 =  1 and 𝑋 =  0. In this context, 

the hazard ratio for these two groups is articulated 

as: 

 

     𝐻𝑅 =
ℎ(𝑡|𝑋=1)

ℎ(𝑡|𝑋=0)
= exp (𝛽)                             (10) 

 

An HR value of 1 indicates that individuals in both 

categories face an equal risk of experiencing the 

event. Conversely, when 𝐻𝑅 is greater than 1, it 

suggests that individuals in the first category (𝑋 =
 1) have a higher risk of experiencing the event, 

while an HR less than 1 indicates that individuals in 

the second category (𝑋 =  0) face a heightened risk 

of experiencing the event.  

The Cox-proportional hazard model relies on the 

assumption of proportional hazards. Consequently, 

the model may not be suitable for situations where 

this assumption is violated. 

 

3.0 Results and Discussions 

     The data used contains 203 tuberculosis patients 

with six variables, including age, gender (status), 

marital Status, treatment (4 drugs such as 

Bedaquiline, Levofloxacin, Isoniazid, and 

Rifampicin), outcome (censored), and time (in 

days). The drugs were administered to different 

numbers of patients in the study. Bedaquiline was 

given to 3, Levofloxacin to 4, Isoniazid to 36, and 

Rifampicin to 160 patients. Therefore, data visualise 

like scatter plots, histograms, pie plots, Kaplan-

Meier survival curves, tables, and their results were 

done by R and Python software. (R Code, 2022), (R 

Code Team, 2023) and Python, 2022). These are 

shown in Figure 1 below:  

 
Figure 1 Histogram Plots for Status,     

Marital Status, Outcome, and Treatment 

 

Figure 1 depicts the histogram of variables with 

number of patients: status/gender (male = 184 and 

female = 19), marital-status (single = 174, married =  

 

10, seperated = 18, divorce = none, and widowed = 

1), outcome/censored (alive = 186 and dead = 17), 

and treatment (Rifampicin = 153, Isoniazid = 21, 

Levofloxacin = 4 and Bedaquinine = 3).   
 

 
Figure 2 The Pie Plot for Status 

(Gender) and Censored 

 

Figure 2 above shows the pie plot for gender and 

censored with their percentage. Gender comprises: 

male with 90.6% and female has 9.4%, and 

censored consists: alive with 91.6% and dead with 

8.4%. 
 

 
Figure 3 The Pie Plot for Marital Status   

and Treatment 

 

Also, Figure 3 above exhibits the pie plot for marital 

status and treatment with their percentage. marital-

status constitutes: single (85.7%), married (4.9%), 

separated (8.9%), and widowed (0.5%),  and 

treatment makes up: Rifampicin (75.4%), Isoniazid 

(21.2%), Levofloxacin (2.0\% %), and Bedaquiline 

(1.5%). 
 

 
Figure 4 The Kaplan-Meier Survival 

Curve for Tuberculosis Treatment 
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The x-axis represents time, and the y-axis shows the 

survival probability (ranging from 0 to 1). The 

colored line represents a group of individuals being 

studied. The survival curve declines as events (such 

as deaths or failures) occur within the group. Group 

1 (blue) has the highest survival rate initially, but as 

time progresses, the survival probability declines. 

The shaded regions around the survival curves 

represent the confidence intervals (often 95%) for 

the survival estimates. The wider shaded regions 

indicate greater uncertainty in the estimate due to a 

smaller sample size or more variability in survival 

times. For instance, the shaded area for groups 3 and  

 

4 (orange and red) is wide at later times, which 

means high uncertainty. The "steps" in the curves 

occur when an event (such as death or failure) 

happens. When no events happen during a period, 

the line remains flat. A sharp drop in the curve 

indicates multiple events happening in close 

succession. Group 3 (orange colour) shows a sharp 

drop around the middle of the plot, and this indicates 

a significant number of events happening within a 

short time frame.  

 

 

Table 1. Descriptive Summary Statistics of Tuberculosis Dataset 

Statistics Age Gender Marital Status Treatment Outcome Time 

Min 23.00 1.00 1.00 1.00 0.00 34.00 

Mean 49.30 1.09 1.25 1.31 0.92 679.61 

Std 12.93 0.29 0.65 0.60 0.28 798.52 

25% 39.00 1.00 1.00 1.00 1.00 199.00 

50% 48.00 1.00 1.00 1.00 1.00 429.00 

75% 59.00 1.00 1.00 1.00 1.00 954.00 

Max 83.00 2.00 5.00 4.00 1.00 3871.00 
  

Table 1 contains summary statistics for each 

variable considered in the study. The statistics are: 

minimum, mean, standard error, 1st quartile, 

median, 3rd quartile, and maximum.  
 

Table 2. Kaplan-Meier Survival Analysis for Bedaquiline Treatment 

Time 

(days) 

No of Risk No of 

Event 

Survival 

Probability 

Standard 

Error 

95% CI 

Lower 

95% CI 

Upper 

80 3.000 1.000 0.667 0.272 0.300 1.000 

1241 2.000 1.000 0.333 0.272 0.067 1.000 

1313 1.000 1.000 0.000 NaN NA NA 
 

In Table 2 above, the survival analysis of 

Bedaquiline treatment for 3 patients has no death of 

patient recorded during the event, showing that: at 

80 days, 66.7% of the patients survived at the initial 

survival rate, and the survival probability is 0.667. 

At 1241 days, survival probability decreased to 

0.333 (33.3% patients) decline in survival 

probability. While at 1313 days, all patients 

experienced the event (death), resulting in a survival 

probability of 0.000, during the long-term outcome. 

The standard error and confidence intervals were 

NaN at 1313 days, likely due to the absence of 

remaining subjects.  Moreover, Bedaquiline 

treatment depicts moderate initial effectiveness, 

wide confidence intervals show significant 

uncertainty due to the very small sample size (3 

patients), and survival probability decreases over 

time.    
 

Table 3. Kaplan-Meier Survival Analysis for Levofloxacin Treatment 

Time 

(days) 

No of Risk No of 

Event 

Survival 

Probability 

Standard 

Error 

95% CI 

Lower 

95% CI 

Upper 

51 5.000 1.000 0.800 0.179 0.516 1.000 

570 4.000 1.000 0.600 0.219 0.293 1.000 

2713 2.000 1.000 0.300 0.239 0.063 1.000 

3564 1.000 1.000 0.000 NaN NA NA 
 

Table 3. The survival analysis of Levofloxacin 

(drug) for the treatment of 4 patients, of whom 1 

died. This shows that, at 51 days, 80% of the patients 

survived (survival probability of 0.800) at the initial 

survival rate. Gradual decline occurred when 

survival probability decreased over time, with 60% 

surviving at 570 days and 30% at 2713 days. 

Meanwhile, at 3564 days, all patients experienced 

the event (death), resulting in a survival probability 

of 0.000 as a long-term outcome. The standard error 

and confidence intervals were NaN, likely due to the 

absence of remaining subjects. In addition, 

Levofloxacin treatment shows limited effectiveness, 

with 80% survival at 51 days. Also, wide confidence 

intervals indicate uncertainty due to the small 
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sample size, and survival probability decreases over 

time, suggesting potential treatment limitations. 
 

Table 4. Kaplan-Meier Survival Analysis for Isoniazid Treatment 

Time 

(days) 

No of Risk No of 

Event 

Survival 

Probability 

Standard 

Error 

95% CI 

Lower 

95% CI 

Upper 

46 42.000 1.000 0.976 0.024 0.931 1.000 

49 41.000 1.000 0.952 0.033 0.990 1.000 

50 39.000 1.000 0.928 0.040 0.853 1.000 

70 38.000 1.000 0.904 0.046 0.818 0.998 

“ “ “ “ “ “ “ 

“ “ “ “ “ “ “ 

“ “ “ “ “ “ “ 

1703 3.000 1.000 0.071 0.047 0.019 0.261 

1274 2.000 1.000 0.035 0.034 0.005 0.237 

2734 1.000 1.000 0.000 NaN NA NA 

Table 4 consists of survival analysis of Isoniazid 

(drug) treatment of 36 patients, and 8 are right 

censored, revealing the initial survival probability at 

46 days. Approximately 97.6% of patients were 

estimated to have survived (survival probability = 

0.976). By 70 days, the survival probability 

decreased to 0.904, of patients were estimated to 

have survived as the survival probability declined. 

Also, by 2734 days, all patients had experienced the 

event (death), resulting in a survival probability of 

0.000 at event occurrence.   The standard error and 

confidence intervals were NaN, likely due to the 

absence of remaining subjects. It is discovered that 

as the days increased, the number of risks, survival 

probability, and 95% lower and upper bounds 

decreased. Summarily, Isoniazid treatment is 

effective in the short term, with high survival 

probabilities at early stages. Nevertheless, the 

survival probability decreases over time, indicating 

that the treatment’s effectiveness may decrease and 

cause the disease to progress. 

 

Table 5. Kaplan-Meier Survival Analysis for Rifampicin Treatment 

Time 

(days) 

No of Risk No of 

Event 

Survival 

Probability 

Standard 

Error 

95% CI 

Lower 

95% CI 

Upper 

34 152.000 1.000 0.993 0.007 0.981 1.000 

43 151.000 1.000 0.987 0.009 0.969 1.000 

47 150.000 2.000 0.974 0.013 0.949 0.999 

57 148.000 1.000 0.967 0.014 0.939 0.996 

“ “ “ “ “ “ “ 

“ “ “ “ “ “ “ 

“ “ “ “ “ “ “ 

3548 3.000 1.000 0.016 0.011 0.004 0.062 

3773 2.000 1.000 0.008 0.008 0.001 0.055 

3871 1.000 1.000 0.000 NaN NA NA 
   

Table 5. The survival analysis of Rifampicin (drug) 

treatment for 36 patients, with 8 right censored. At 

high initial survival probability, by 34 days, 

approximately 99.3% of patients were estimated to 

have survived (survival probability = 0.993). There 

is are gradual decline in survival probability by 57 

days, the survival probability decreased to 0.967, 

indicating that about 96.7% of patients were 

estimated to have survived. However, at 3871 days, 

all patients had experienced the event (death), 

resulting in a survival probability of 0.000 at event 

occurrence. The standard error and confidence 

intervals were NaN, likely due to the absence of 

remaining subjects. In addition, it also reveals that 

as days increase, the number of risks, survival 

probability, and 95% lower and upper bounds are 

decreasing. In summary, Rifampicin treatment 

shows high efficacy in the short term, with a survival 

probability of 99.3% at 34 days. The survival 

probability gradually decreases over time, indicating 

that the treatment’s effectiveness may decrease or 

the disease may continue. Hence, the narrow 

confidence intervals at early stages, e.g., 34 and 57 

days, suggest relatively precise estimates of survival 

probability.  
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Table 6. Cox Proportional Hazard Model for Treatment and 

Outcome 

Covariate Age Gender Marital 

Status 

Time 

Coef 0.004 -2.420 0.042 -0.000 

Exp(Coef) 1.004 0.089 1.043 0.999 

Se(Coef) 0.006 0.594 0.109 0.000 

Coef 95% 

Lower 

-0.007 -3.582 -0.171 -0.000 

Exp (Coef 

95% Lower) 

0.014 -1.255 0.256 0.000 

Coef 95% 

Upper 

0.993 0.003 0.843 0.999 

Exp (Coef 

95% Upper) 

1.014 0.285 1.292 1.000 

Cmp  0.000 0.000 0.000 0.000 

Z 0.636 -4.075 0.389 -0.053 

p-value 0.525 0.000 0.697 0.958 

-log(p) 0.930 14.405 0.521 0.066 

 

The results in Table 6 are from the Cox proportional hazards 

model for treatment outcomes of the 203 tuberculosis patients. 

The model is used to estimate the effect of several covariates on 

the hazard or risk of an event happening (e.g., death, failure) 

and so on. The breakdown of the analysis goes thus:  

A coefficient of 0.004 shows a small positive coefficient, 

indicating that age slightly increases the hazard. The exp(coef) 

reveals that the hazard ratio is 1.004, meaning that for every 

one-year increase in age, the hazard increases by about 0.40%. 

Then, the Confidence Interval CI for the hazard ratio is (0.993, 

1.014), which includes 1, indicating no significant effect. The 

p-value (0.525) is quite large, indicating that Age is not a 

significant predictor of the hazard.  

As for gender, a coefficient of (-2.420) has a large negative 

coefficient, which indicates that a higher Status value is 

associated with a decreased hazard. Exp(coef) is the hazard ratio 

of 0.089, which is significantly less than 1, and implies that a 

higher Status is associated with a 91% reduction in the hazard. 

The CI for the hazard ratio is (0.003, 0.285), which does not 

include 1, suggesting a statistically significant effect. Then, the 

p-value is highly significant (less than 0.05), meaning that 

gender is a statistically significant predictor of the hazard and 

has a strong effect.  

Furthermore, the coefficient of marital status is 0.042, a small 

positive coefficient that suggests that being in a certain marital 

status slightly increases the hazard. Exp(coef) yields 1.043, 

which indicates that the hazard ratio is slightly above 1.000; this 

indicates that marital status increases the hazard by 4.3%. The 

CI for the hazard ratio is (0.843, 1.292), which includes 1, 

indicating no significant effect. The p-value is (0.697) very 

high, indicating that marital status is not statistically significant.  

Meanwhile, time discloses the following results as its 

coefficient gives -0.000, indicating that the coefficient is almost 

zero and that Time has virtually no effect on the hazard. The 

exp(coef) is 0.999, the hazard ratio is almost 1, indicating no 

real change in hazard with time. The CI for the hazard ratio is 

(0.999, 1.000), which includes 1.000, confirming no significant 

effect. The p-value = 0.958 is extremely high, and this suggests 

that Time is not statistically significant.  
 

3.1 Summary of Kaplan-Meier Plot 

 

Group 1 (blue colour) and group 2 (green colour) have relatively 

similar survival curves for most of the timeline, though group 1 

shows slightly better survival in the early stages. Group 3 

(orange colour) and group 4 (red colour) both in Figure 4, show 

different patterns, also group 3 experienced a sharp drop, while 

group 4 had the most variability (as indicated by the wide 

confidence intervals in Table 2). Group 4 has the steepest drops 

in survival probability early on. Groups 1 and 2 appear to have 

better survival outcomes, as indicated by their higher survival 

probabilities at various times. Groups 3 and 4 have worse 

survival outcomes, with sharp drops in survival probability and 

larger uncertainty (as seen in the wide confidence intervals in 

Tables 2 and 3). In summary, Bedaquiline fitted 3 observations 

with zero right-censored observations, Levofloxacin fitted 4 

observations with 1 right-censored observation, Isoniazid fitted 

36 observations with 8 right-censored observations, and 

Rifampicin fitted 160 observations with 8 right-censored 

observations. 
 

3.2 Summary of Findings of Cox Proportional Hazard 

Model 

 

The only statistically significant covariate in this analysis is 

Status (p-value = 0.000046), which shows a strong protective 

effect with a hazard ratio = 0.089, given a 91% decrease in 

hazard. Age, marital status, and Time do not have statistically 

significant effects on the hazard based on the provided results. 

Their p-values are greater than 5%, and their confidence 

intervals for the hazard ratios include 1, indicating no strong 

effect on survival. Thus, we conclude that Status is the key 

factor influencing survival in this model, while the other 

covariates do not show significant associations with the 

outcome. CoxPH fitted with 203 total observations, and 17 are 

right-censored observations. Statistics are crucial in the world 

of data. Without data, data science and analytics are rendered 

ineffective.  

From the analysis, Rifampicin and Isoniazid emerged as 

promising treatments, primarily due to their stable survival 

curves and lower censorship rates. Visual inspection of the 

Kaplan-Meier curves and comparison of confidence intervals 

indicate that these treatments provide better survival outcomes, 

especially in the early stages of treatment. Notably, the group 

treated with Rifampicin showed less variability in survival 

curves, indicating consistent results and robust therapeutic 

efficacy.  

Conversely, the uncertainty observed in the survival curves for 

Levofloxacin and bedaquiline may be related to the small 

sample size and the absence of censored observations for 

bedaquiline, which suggests a selection bias. Including a larger 

number of patients and evaluating these treatments in a 

multicenter study could provide more clarity on the actual 

effectiveness of these drugs in tuberculosis treatment. 

Moreover, other factors, such as bacterial resistance and drug 

co-administration, could be considered in future analyses to 

assess how these elements modulate treatment response.  

In conclusion, this study demonstrates the practical 

applicability of statistical techniques in clinical data analysis, 

using the CoxPH model and Kaplan-Meier curves to evaluate 

the efficacy of different treatments for tuberculosis. Rifampicin 

and Isoniazid stood out as the best treatment options, while 

Levofloxacin and Bedaquiline require further investigation. The 

analysis provides valuable insights for clinical practice and 

highlights the importance of statistics as a cornerstone for data 

science and evidence-based decision-making. Future studies 

should address and discuss limitations. Also, considering the 
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use of more advanced statistical methods to obtain more precise 

and generalizable estimates, contributing to a better 

understanding of the factors that influence the survival of 

tuberculosis patients. Summarily, the Cox proportional hazard 

model identified e.g., age, gender, marital Status and time as 

significant predictors of mortality. 

 

4.0 Conclusions  

This study investigated the survival outcomes and predictors of 

mortality among patients treated with four different anti-

tuberculosis medications: Bedaquiline, Levofloxacin, 

Isoniazid, and Rifampicin. The Kaplan-Meier plot in Figure 4 

revealed varying survival probabilities for patients treated with 

these medications. Hence, the Cox proportional hazard model 

output stated in Table 6 identified significant predictors of 

mortality, providing insights into the factors that influence 

treatment outcomes. 
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