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 Abstract  
This study presents an intelligent deep learning-based approach for anomaly detection in fiber 

optic infrastructure using the YOLOv9s object detection model. The objective is to improve 

surveillance efficiency by accurately detecting humans and animals interacting with pole-

mounted fiber optic structures in real time. A custom dataset was developed by capturing and 

annotating real-world video footage from diverse locations and environmental conditions. High-

resolution images were extracted and labeled using CVAT, ensuring high-quality annotations 

across object types and activities. Model training was conducted in PyTorch, incorporating data 

augmentation techniques such as brightness adjustment, flipping, noise injection, and geometric 

transformations to enhance robustness and adaptability. YOLOv9s was evaluated against 

YOLOv8s and YOLOv5s using standard metrics. It achieved a precision of 86.2%, recall of 

88.7%, mAP@0.5 of 90.4%, and mAP@0.5:0.95 of 75.1%, while maintaining a low inference 

time of 59.3 milliseconds. These results demonstrate YOLOv9s’s superior balance between 

accuracy and computational efficiency. The system supports real-time anomaly detection, making 

it highly suitable for smart city surveillance and telecom infrastructure monitoring. This work 

contributes a reliable, scalable solution for enhancing the automation and security of networked 

environments. 
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Nomenclature and units  

 

YOLO   You Only Look Once 

YOLO-BYTE  You Only Look Once - Binary YouTube Efficient 

FODVS  Fiber Optic Detection and Video Surveillance 

UAV  Unmanned Aerial Vehicle 

PGI  Pole-mounted Ground Infrastructure 

SPPF  Spatial Pyramid Pooling - Fast 

NMS  Non-Maximum Suppression 

FP  False Positive 

TP  True Positive 

FN  False Negative 

IOU  Intersection over Union 

AP  Average Precision 

PR  Precision-Recall 

mAP  mean Average Precision

KIU  
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1. Introduction 

The rapid development of telecommunication infrastructure, 

particularly optical fiber networks, has significantly transformed 

global communication systems by increasing bandwidth capacity, 

reducing latency, and enabling high-speed data transmission. As 

demand for connectivity continues to grow, the deployment of 

pole-mounted optical fiber infrastructure has become increasingly 

widespread, especially in regions where underground cabling is 

economically or logistically unfeasible. These systems are critical 

for ensuring reliable last-mile connectivity, but they are also 

inherently vulnerable to environmental and human-induced 

disturbances (Y. Wang et al., 2019). In particular, their exposure 

to open environments whether along highways, rural paths, or 

remote terrains makes them susceptible to a range of threats that 

can impair system performance and service continuity. Common 

sources of disruption include animals such as rodents, birds, and 

larger species that may damage cables through chewing, nesting, 

or physical interference. Likewise, human activities ranging from 

theft and vandalism to unauthorized access or illegal construction 

pose serious risks to infrastructure integrity. Such disturbances 

not only result in costly maintenance and service interruptions but 

also raise safety concerns and complicate the logistics of timely 

intervention (Redmon & Farhadi, 2018). Therefore, there is a 

growing demand for robust, automated surveillance systems that 

can identify and classify potential threats in real time and with 

high accuracy. While traditional surveillance solutions like 

motion sensors or CCTV systems provide basic monitoring 

capabilities, they often lack the intelligence to distinguish 

between types of anomalies or function effectively under varied 

environmental conditions. These limitations hinder timely threat 

detection and contribute to false alarms or missed events (Rane, 

2023). In response, the application of deep learning-based object 

detection algorithms has emerged as a promising direction for 

enhancing infrastructure surveillance. Among these, the You 

Only Look Once (YOLO) framework stands out for its 

remarkable balance between detection speed and accuracy, 

enabling real-time object recognition across complex scenes 

(Redmon & Farhadi, 2018). 

YOLOv9s, a recent lightweight iteration of the YOLO family, is 

specifically optimized for environments with constrained 

computational resources while maintaining high precision. It 

incorporates advanced architectural features such as 

Programmable Gradient Information (PGI) and GELAN, which 

enhance feature learning, gradient flow, and multi-scale 

representation essential for detecting small or partially occluded 

objects in dynamic outdoor settings (Shi, Li, Liu, Zhou, & Zhou, 

2024; C.-Y. Wang, Yeh, & Mark Liao, 2024). These qualities 

make YOLOv9s particularly suitable for deployment in real-time 

monitoring systems focused on fiber infrastructure in remote and 

rural environments. This study explores the use of YOLOv9s to 

develop an intelligent anomaly detection system that can 

automatically detect and classify human and animal activity 

around fiber optic pole installations. The research includes the 

creation of a custom dataset consisting of annotated real-world 

images captured under varied weather and lighting conditions 

along the Ishaka–Kasese road. Through model training, 

performance benchmarking, and real-time evaluation, this work 

aims to offer a scalable and efficient solution for improving 

infrastructure resilience, security, and operational efficiency. 

Ultimately, the integration of such deep learning systems into 

fiber optic surveillance holds the potential to transform how 

telecom networks are monitored, moving toward more automated, 

intelligent, and proactive infrastructure management strategies. 

The primary contributions of this paper are as follows: 

Developed a custom dataset with a high-resolution camera from 

the Ishaka-Kasese fiber optic link.   The dataset focuses on 

distinguishing both humans and animals near optical fiber 

infrastructure installed on a pole in a variety of weather and 

lighting conditions. Manual annotations were implemented 

to ensure high labeling accuracy, making the dataset suitable for 

real-world detection applications. By simulating actual fiber optic 

surveillance deployment settings, the study records video from 

independent pole installations, metropolitan areas, and rural areas. 

This ensures that the model is flexible and applicable to actual 

challenges in fiber optic infrastructure surveillance, where human 

and animal intrusions or interferences could compromise service 

dependability. Comprehensive Assessment Using Conventional 

Detection Metrics of precision, recall, mAP50, and mAP50-95 are 

used to evaluate the YOLOv9s model. These metrics offer a 

comprehensive understanding of the model's ability to manage a 

range of detection problems, acting as a quantitative benchmark 

for upcoming research in deep learning-based surveillance-based 

anomaly detection. 

This paper is structured as follows: Section 2 presents a 

comprehensive overview of related studies and recent 

advancements in object detection and surveillance using deep 

learning techniques. Section 3 elaborates on the specific methods 

and main algorithm in this paper. Sections 4 and 5 discuss the 

experimental setup, present the results obtained, and provide an 

in-depth analysis of the model’s performance under varying 

conditions. Finally, Section 6 offers a conclusive summary of the 

key findings, and potential directions for future work. 

2. Related Study 

Recent advancements in deep learning, particularly YOLO-based 

models, have significantly enhanced real-time detection 

capabilities in domains such as animal monitoring, infrastructure 

surveillance, and anomaly detection. Despite their effectiveness, 

challenges remain regarding model scalability, environmental 
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robustness, and application specificity in critical infrastructure 

contexts. 

2.1 Evolution of YOLO and Surveillance Applications 

YOLO’s evolution has played a pivotal role in modern object 

detection. (Redmon & Farhadi, 2018) introduced YOLOv3, 

which improved detection speed and accuracy, making it suitable 

for surveillance applications. Subsequent versions, such as 

YOLOv4 (Ashwin Shenoy & Thillaiarasu, 2023) and YOLOv5 

(Pranavan, Aakash, Balakrishnan, Sai, & Cornet, 2023), have 

been applied to monitor human and animal activity in diverse 

environments. YOLOv9, the latest iteration, enhances detection 

through advanced modules like GELAN and PGI, which improve 

performance on small and occluded objects (Elmir, Touati, & 

Melizou, 2024). The integration of YOLO with lightweight and 

hybrid frameworks has led to innovations in surveillance. (Elmir 

et al., 2024) proposed a hybrid system combining motion 

detection, frame removal, and YOLOv9, achieving high precision 

for human and vehicle detection, though it remains susceptible to 

false alarms in poor weather. Similarly, (Sarker, 2024) proposed 

an AI-based anomaly detection system with real-time capabilities, 

supporting intelligent surveillance. 

2.2 Infrastructure Monitoring and Anomaly Detection 

Multiple studies emphasize deep learning’s role in infrastructure 

monitoring. (Zhang et al., 2025). provided a comprehensive 

review of surveillance technologies in fiber optic networks, 

highlighting real-time threat detection mechanisms. (Nguyen et 

al., 2021) introduce the use of YOLO for rapid identification of 

risks in critical infrastructure. Sujatha and Janani (2024) extended 

this by applying deep learning to classify human and animal 

activities near sensitive installations. (Selim, Hemdan, Shehata, & 

El-Fishawy, 2021) and (Makled, 2024) explored anomaly 

detection in large-scale networks using deep models to enhance 

threat recognition and categorization. (Abdelli et al., 2022) 

proposed an attention-based BiGRU-autoencoder model for fiber 

fault detection with high accuracy, though it required significant 

computational resources and data volume, limiting real-time 

applicability. Other approaches integrated sensor data with deep 

learning. (Sha, Feng, Rui, & Zeng, 2021) combined Fiber Optic 

Distributed Vibration Sensors (FODVS) with YOLOv3 for 

pipeline event detection, offering a promising fusion of sensing 

and AI. However, the system remains at a proof-of-concept stage 

with limited scalability. Similarly, (Andrew, Greatwood, & 

Burghardt, 2019) used UAVs with YOLOv2 for autonomous 

species detection, demonstrating potential for non-invasive 

monitoring, albeit with limited environmental generalization. 

2.3 Animal and Behavior Detection in Open Environments 

In the domain of animal behavior monitoring, YOLO-based 

models have shown strong performance but are often confined to 

agricultural or controlled environments. (Delwar et al., 2025) used 

YOLOv8 and IoT for real-time animal intrusion detection in 

farms with 99% accuracy, though performance varied across 

different animal types. (Chan et al., 2024) introduced YOLO-

Behaviour, enabling multi-species behavior recognition with 

minimal training data, but the system needed customization for 

complex behavioral patterns. (Zheng, Li, & Qin, 2023) further 

advanced livestock monitoring using a YOLO-BYTE hybrid, 

improving tracking but requiring careful camera placement. (Lu, 

Li, & Lu, 2024) developed an objectness-aware network for 

wildlife detection in dense habitats, which improved localization 

but struggled with occlusion and low-light scenarios. (Payghode, 

Goyal, Bhan, Iyer, & Dubey, 2023) focused on activity 

recognition in video surveillance using neural networks but noted 

high processing costs for real-time applications. 

2.4 Research Gap and Justification 

While numerous studies highlight the efficacy of YOLO-based 

models in surveillance and animal monitoring, they often lack 

contextual tailoring to pole-mounted fiber optic infrastructure. 

For instance, although (Elmir et al., 2024) and (Payghode et al., 

2023) demonstrated strong general surveillance performance, 

their solutions were not adapted for telecom-specific 

environments. Similarly, fiber-specific sensing approaches like 

that of (Abdelli et al., 2022) omit real-time classification of human 

and animal threats. Additionally, animal detection studies (Chan 

et al., 2024; Delwar et al., 2025) are predominantly based in farm 

settings and do not address the unique risks posed in rural or semi-

urban telecom deployments, such as tampering or unauthorized 

access. This creates a gap in the development of domain-specific 

surveillance systems. This study addresses that gap by designing 

a YOLOv9s-based system specifically tailored to detect and 

classify human and animal activity near pole-mounted optical 

fiber infrastructure. By focusing on real-world, open-environment 

scenarios relevant to telecom networks, this research contributes 

a specialized framework that improves surveillance granularity 

and enhances infrastructure resilience and predictive 

maintenance, especially in remote and resource-limited regions. 

3. Methodology 

3.1. Overview of YOLOv9s of Model 

YOLOv9s is a compact, efficient object detection model that was 

released as part of the YOLOv9 family. It is primarily designed 

for real-time deployment on edge devices with low processing 

resources. It strikes an excellent mix between accuracy, speed, 

and model size, making it ideal for applications such as 

surveillance, smart monitoring, and infrastructure security 
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(Yaseen, 2024). Compared to previous lightweight variations like 

YOLOv5n and YOLOv8n, YOLOv9s takes advantage of modern 

architectural advances while keeping a low computational 

footprint (Zhang et al., 2025). This makes it exceptional for 

circumstances requiring rapid detection of small or moving 

objects, such as human and animal movement, in order for the 

system to respond. The YOLOv9s variation combines recent 

training and inference optimizations while maintaining YOLO's 

signature single-stage detection structure. It offers quantization, 

pruning, and numerous deployment formats, making it simple to 

integrate into a wide range of systems, including embedded 

surveillance units and remote sensing modules (Jin Li, Gong, 

Hou, & Wang, 2024). With its increased speed and detection 

precision, YOLOv9s stands out as an ideal solution for security-

critical infrastructure monitoring, particularly in outdoor or rural 

locations where computing efficiency and model portability are 

key. 

3.1.1. Analysis of the Original YOLOv9s Network Structure 

The YOLOv9s model is a lightweight yet capable form of the 

YOLOv9 object-detection series, specifically designed to 

reconcile high detection precision with computing efficiency (C.-

Y. Wang et al., 2024). YOLOv9s builds on the legacy of its 

predecessors in the YOLO series, including a number of 

architectural changes and training methodologies that 

considerably improve its performance in real-time image 

identification and object detection tasks (Yaseen, 2024). YOLOv9 

is built around the Programmable Gradient Information (PGI) 

framework, a unique technique that ensures precise gradient flow 

during backpropagation. This approach increases the quality of 

gradient information used in the computation of the objective 

function, allowing for more effective network weight updates. In 

reality, PGI leads to faster convergence during training and higher 

overall detection precision, especially in difficult circumstances 

with occlusions, overlapping objects, or variable object scales 

(An, Zhang, Sun, & Wang, 2024). Figure 1 present the structure 

of the YOLOv9s object detection network, including the data flow 

from input to output.  Convolutional (Conv) layers are used in the 

early stages of processing to extract important low-level 

information from input images.  These layers record patterns 

including edges, textures, and basic shapes, which serve as the 

foundation for more in-depth semantic analysis.  The network 

then moves on to a more advanced feature processing stage with 

the addition of the RepNCSPELAN4 module, which serves as the 

primary feature extraction and fusion unit (Shi et al., 2024; Vo, 

Mui, Thien, & Tien, 2024).  This module is intended to aggregate 

characteristics from various depths of the network, effectively 

combining spatial and semantic information to improve the 

robustness of object representation (Jun Li, Feng, Shao, & Liu, 

2024). To enable multi-scale object detection, the Concatenation 

(Concat) technique is used to combine feature maps from several 

levels of the network.  

 

 

Figure 1: The Structure of Yolov9s Model 

This technique allows for the integration of both fine-grained and 

abstract information, which is especially important when 

recognizing objects of variable sizes, such as small animals or 

partially visible intruders in surveillance film.  Following that, the 

Spatial Pyramid Pooling - Fast (SPPF) module is added to 

improve the model's ability to deal with scale fluctuations.  The 

SPPF module concatenates information from several spatial 

scales, allowing the model to understand contextual cues as well 

as local features.  This multi-scale awareness improves the 

accuracy of recognizing both close and distant targets in complex 

real-world contexts. In the final stage of detection, the identified 

objects are classified within their bounding boxes using a 

Convolutional Classification Layer (Conv CLS).  Each bounding 

box is allocated a class label based on the learnt attributes.  The 

Detect layer generates the final detection output, converting the 

classifications and bounding box coordinates into actionable 

findings.  It also uses Non-Maximum Suppression (NMS) to 

reduce duplicate detections by keeping only the most confident 

bounding box for overlapping predictions.  Throughout the 

design, directional arrows depict the flow of data, beginning with 

the input image and progressing sequentially via convolutional 

feature extraction, multi-scale fusion, and classification, 

culminating in the final, refined object detection output. 

4. Experimental Environment and Dataset Setup 
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4.1. Dataset Description 

The dataset contains a broad collection of images that shows 

human and animal activity around pole-mounted optical fiber 

infrastructure, especially in rural and semi-urban areas. It contains 

around 1500 annotated instances of different objects, such as 

humans (e.g., technicians, pedestrians) and animals (e.g., 

monkeys, chimpanzee, birds). The annotations contain bounding 

boundaries and activity labels, allowing for fine-grained object 

classification and activity detection. To improve model 

robustness, the dataset is divided into three sets: training (70%), 

validation (20%), and testing (10%), and enriched with techniques 

such as flipping, brightness variation, and cropping to simulate 

real-world environmental variability. The use of coarse-grained 

labels “human,” “animal,” and “pole” was a strategic decision 

grounded in the need to balance system performance, annotation 

efficiency, and contextual relevance for infrastructure 

surveillance. These categories directly support the study’s 

objectives: detecting human intrusion, animal interference, and 

monitoring structural elements critical to pole-mounted optical 

fiber systems. Finer-grained labels could increase annotation 

effort, introduce classification ambiguity, and raise computational 

demands, thereby compromising real-time detection performance. 

Given the deployment context often remote or resource-

constrained areas maintaining low latency and high accuracy was 

prioritized. Thus, the adopted labeling strategy ensures 

operational effectiveness while avoiding unnecessary complexity, 

aligning with the system’s intended use for anomaly detection and 

preventive maintenance in challenging environments. The 

datasets and code used in this study are available from the 

corresponding author upon reasonable request. 

4.2. Dataset Production 

To produce a diversified, high-quality, and representative dataset 

suited for robust model training and evaluation, data collection 

was thoroughly planned and carried out in a variety of 

environmental scenarios and geographical regions. The random 

photos were taken along the Ishaka-Kasese route, with the goal of 

identifying and capturing both human and animal movement near 

fiber optic poles. The data collection procedure comprised 

recordings at different times of day morning, afternoon, and 

evening to capture variations in natural illumination and 

movement patterns. Furthermore, footage was captured in a 

variety of weather circumstances, including sunny, cloudy, and 

rainy settings, to approximate real-world unpredictability. Data 

was collected in a variety of applications including urban areas, 

rural communities, and remote pole sites, to guarantee broad 

contextual representation. infrastructure. This extensive method 

greatly increased the dataset's diversity and richness, which 

improved the YOLOv9s model's generalizability across various 

security and maintenance surveillance scenarios involving optical 

fiber infrastructure. 

4.3. Image Acquisition and Labeling Using YOLOv9s 

The obtained images were manually annotated using LabelImg, 

an open-source graphical annotation tool commonly utilized in 

object detection applications. This labeling method was critical in 

training the YOLOv9s model to reliably recognize and classify 

key objects such as poles, human, animals, and specific activities 

occurring around pole-mounted fiber infrastructure. Each object 

of interest was wrapped in a precise bounding box to offer the 

YOLOv9s-model with the detailed positional and spatial 

information it requires for accurate localization and classification. 

Bounding boxes were carefully designed to snugly contain the 

target objects while decreasing background noise, hence boosting 

the model's capacity to acquire reliable feature representations. 

The annotations were saved in YOLO format, which is compatible 

with the YOLOv9 training pipelines, and were designed to 

facilitate multi-class detection and fine-grained activity 

recognition. The annotations were saved in YOLO format, which 

is compatible with the YOLOv9 training pipelines, and were 

designed to facilitate multi-class detection and fine-grained 

activity recognition. Table 1 present the class frequency and 

distribution for the annotated images 

Table 1: The class frequency and distribution for the annotated 

images 

Class Name Number of 

Instances 

Percentage of 

Total (%) 

Human 750 50.0% 

Animal 500 33.3% 

Pole 250 16.7% 

Total 1500 100% 

 

4.4. Class Label Assignment and Dataset Consistency 

The class labels were assigned using a preset schema that divided 

objects and actions into various groups related to the study's 

monitoring aims. The basic classes were human, animal, and pole. 

Each label was awarded based on visual qualities and contextual 

information in the photograph, ensuring that even minor 

differences in posture or behavior were accurately caught. To 

ensure clarity and minimize ambiguity, a tight class name strategy 

was followed throughout all annotations. Several quality tests 

were carried out on the labeled images to ensure consistency and 

dependability in the dataset. Cross-validation was utilized by 

annotators to detect mislabeled items, irregular bounding box 

sizes, and class borders that overlapped. Any inconsistencies or 

errors were addressed in cooperation with a lead annotator to 

ensure that annotation standards were followed. Furthermore, 
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annotation rules were defined and given to all labelers in order to 

reduce subjective interpretation, particularly for activity-based 

labels with movement cues that could be misunderstood. These 

efforts ensured that every occurrence in the dataset was labeled 

with high accuracy and consistency, which is necessary for 

optimizing the YOLOv9s model's learning process. The dataset 

was also assessed for class balance and distribution to verify that 

no one group was either overrepresented or under-represented, as 

this could create bias during training. In circumstances where 

certain activity classes like human, animal and pole were under-

sampled, targeted data augmentation was done to artificially 

expand these subsets. This balance ensured that the YOLOv9s 

model could generalize well across all classes while also 

performing robustly in real-time surveillance applications. 

Consistent labeling, unambiguous class definitions, and balanced 

representation resulted in a high-quality dataset appropriate for 

developing an efficient and accurate YOLOv9s-based detection 

system. 

4.5. Training Configuration and Augmentation Techniques 

Using YOLOv9s 

The YOLOv9s model was trained and evaluated on a workstation 

equipped with an Intel Core i7-6700HQ CPU running at 2.60 

GHz, 24 GB of RAM, and a 500 GB SSD, ensuring a stable and 

efficient computational setup. A NVIDIA Quadro 1000M GPU 

was used to accelerate model training via its CUDA cores, while 

Python 3.12 served as the primary programming interface. The 

training environment was managed through Anaconda and 

implemented using the PyTorch deep learning framework, which 

offered full support for the YOLOv9 architecture. Input images 

were resized to 640 × 640 pixels, aligning with YOLOv9s’ 

optimal detection resolution. The model was trained for 100 

epochs using a batch size of 16 and an initial learning rate of 

0.001, with the Adam optimizer employed to update model 

parameters. Model checkpoints were saved periodically to the 

SSD to ensure rapid loading and recovery. A comprehensive data 

augmentation strategy was applied to enhance the model’s 

generalizability. This included random rotation, scaling, and 

cropping, which simulated variations in object angle, distance, 

and partial occlusions. These augmentations were particularly 

important for modeling real-world conditions encountered in 

surveillance of pole-mounted optical fiber infrastructure, 

improving the model’s ability to detect and classify human and 

animal activities under diverse scenarios. 

4.6. Evaluation Metrics 

In order to evaluate how well object detection models identify and 

categorize human and animal activity around pole-mounted 

optical fiber infrastructure, this study uses four commonly used 

evaluation metrics: mean Average Precision at IoU threshold 0.5 

(mAP@0.5), mean Average Precision across IoU thresholds from 

0.5 to 0.95 (mAP@0.5:0.95), Precision (P), and Recall (R). 

Precision is defined as the fraction of accurately predicted positive 

samples (true positives) compared to all positive samples 

predicted. It shows the model's capacity to minimize false alarms, 

which is important in surveillance applications because incorrect 

detections might result in irrelevant alerts or interventions. 

Recall assesses the model's ability to identify all true positive 

cases. It is defined as the ratio of true positives to total positives 

(true positives plus false negatives). High recall suggests that the 

model is effective at capturing all important events, such as 

human invasions or animal activity that may interfere with fiber 

infrastructure. The mAP@0.5 acts as a baseline for the model's 

detection accuracy. It is determined by taking the average of the 

average accuracy (AP) scores for each class and applying a fixed 

Intersection over Union (IoU) threshold of 0.5. This statistic 

measures how successfully the model localizes and identifies 

items with a reasonable overlap margin. For a more rigorous and 

complete assessment, the study employs mAP@0.5:0.95, which 

averages AP scores over 91 IoU criteria ranging from 0.5 to 0.95 

in 0.05 increments. This statistic provides a more detailed 

understanding of the model's robustness under changing 

localization tolerances, making it especially useful in real-world 

scenarios where objects may be partially obscured, in motion, or 

vary in size and visibility. 

The mathematical definitions of these metrics are shown from 

equation (1) to (4): 

𝑃 =
TP

TP+FP
    (1) 

𝑅 =
TP

TP+FN
    (2) 

𝑚𝐴𝑃50 =  
1

𝑛
∑ 𝐴𝑃𝑖

𝑛
𝑖=1    (3) 

𝑚𝐴𝑃50−95 =  
1

𝑛
∑ (

1

91

𝑛
𝑖=1 ∑ 𝐴𝑃𝑖𝑗

91
𝑗=𝑖 ) (4) 

Where: TP represent the number of true positive detections, FP is 

the number of false positives, FN is the number of false negatives, 

n is the number of classes, 𝐴𝑃𝑖 is the average precision for class 

iii at an IoU threshold of 0.5, and 𝐴𝑃𝑖𝑗  represents the average 

precision for class 𝑖 at IoU thresholds from 0.5 to 0.95, 

incremented by 0.005. 

 

5. Results 

5.1. Analysis of YOLOv9s Precision-Recall and Confidence-

Based Performance Curves 

Figure 2 shows four essential performance graphs for the 

YOLOv9s model: the Precision-Recall (PR) curve, Precision-

Confidence curve, F1-Confidence curve, and the Recall-
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Confidence curve. The PR curve demonstrates the trade-off 

between precision and recall at various confidence levels. A 

robust PR curve for YOLOv9s is seen, with high accuracy values 

maintained even when recall increases, indicating that the model 

can consistently detect true positives while limiting false 

positives. This smooth, high-arching PR curve demonstrates 

YOLOv9s' robustness in detecting complicated human and animal 

behaviors near pole-mounted optical fiber infrastructure. The area 

under the PR curve (AUC-PR) is large, indicating that the model 

can generalize well to new data and is not unduly sensitive to 

changes in detection thresholds. The Precision-Confidence curve 

reinforces the model's reliability. As the confidence score rises, 

the model retains high precision, peaking at confidence levels 

greater than 0.7. This indicates that when YOLOv9s produces 

predictions with high confidence, they are highly likely to be 

correct an important feature for real-time surveillance 

applications where false alarms must be reduced. The F1-

Confidence curve shows that the F1-score a harmonic mean of 

precision and recall reaches its peak between 0.5 and 0.7 

confidence, indicating that this range is the best threshold for 

balanced performance. This peak implies that YOLOv9s is both 

precise and efficient in minimizing missed detections and false 

positives, resulting in a well-calibrated model appropriate for 

automated anomaly detection. 

 

Figure 2: the precision-recall curve, the precision-confidence 

curve, the F1-confidence curve, and the recall-confidence curve. 

Finally, the Recall-Confidence curve shows how the recall score 

changes as the confidence threshold varies. YOLOv9s retains 

strong recall values across a wide confidence range, with only a 

tiny drop at a confidence level of 0.8. This suggests that the model 

will continue to identify the majority of relevant items even when 

the decision threshold is raised. High recall at lower and mid-

range confidence levels confirms that important events, such as 

human presence or animal activity, are not left behind. Together, 

these performance curves confirm YOLOv9s as an accurate, 

dependable, and well-optimized model capable of offering 

excellent performance in security and maintenance surveillance 

systems, particularly for intelligent monitoring of pole-mounted 

fiber-optic installations. 

5.2. Comparative Analysis of Training and Validation Metrics 

for YOLOv9s, YOLOv8s, and YOLOv5s 

Figure 3 provides a comparative evaluation of the training and 

validation performance of three object detection 

modelsYOLOv9s, YOLOv8s, and YOLOv5s trained over 100 

epochs on a custom dataset. The subplots illustrate trends in 

critical performance metrics, including training and validation 

losses, precision, recall, and mean Average Precision (mAP). 

These indicators are essential for understanding each model's 

convergence behavior, generalization ability, and detection 

accuracy. YOLOv9s, in particular, exhibits a smoother and more 

consistent decline in both loss curves, suggesting effective 

learning without premature overfitting. Throughout training, 

YOLOv9s consistently outperforms the other models in precision 

and recall. Its recall approaches 0.90 by the final epochs, 

indicating robust capability in identifying true positives. 

Simultaneously, the model maintains high precision, reflecting a 

low incidence of false positives. In contrast, YOLOv8s and 

YOLOv5s demonstrate more fluctuating performance, with lower 

precision and recall scores that reflect less reliable object 

differentiation. These results affirm YOLOv9s's enhanced 

detection consistency across various classes, including poles, 

humans, and animals. 

 

Figure 3: (a) The training results and validation performance 

metrics of YOLOv9s at 100 epochs. (b) The training results and 

validation performance metrics of YOLOv8s at 100 epochs. (c) 

The training results and validation performance metrics of 

YOLOv5s at 100 epochs. 
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In terms of mAP@0.5, YOLOv9s achieves scores exceeding 0.80, 

highlighting its superior ability to localize and classify objects 

under varying spatial and contextual conditions. This advantage 

stems from improvements in network architecture, label 

assignment strategy, and feature extraction pipelines, which 

collectively enhance learning efficiency. While YOLOv8s and 

YOLOv5s show incremental gains, their performance plateaus 

earlier, constrained by older architectural frameworks. 

Consequently, YOLOv9s emerges as the most effective model for 

integration into the proposed intelligent surveillance framework, 

particularly for applications requiring real-time, high-accuracy 

monitoring of pole-mounted fiber-optic infrastructure. 

5.3. Detection Results Analysis 

Following training on a customized dataset designed for 

monitoring pole-mounted optical fiber infrastructure, Figure 4 

shows a selection of detection results from the YOLOv9s model. 

The model is highly accurate in distinguishing various item 

classes, including individuals, animals, and poles, across a wide 

range of environmental and lighting circumstances. Bounding 

boxes are drawn precisely around the discovered items, with class 

labels and confidence ratings clearly shown. This demonstrates 

the model's capacity to distinguish between different activity 

categories with little misunderstanding, which is essential for real-

time surveillance applications. The visual results show that 

YOLOv9s can detect partial occlusions, variable object scales, 

and non-standard postures, such as a person mounting a pole, 

which is particularly useful for intrusion detection and 

infrastructure safety monitoring. Furthermore, the model 

performs well in reducing false positives while properly 

identifying actual cases in both high-contrast and chaotic 

backdrops. Detection is consistent across angles and distances, 

demonstrating the usefulness of data augmentation approaches 

and the model architecture's durability. The confidence scores 

reported in the bounding boxes are consistently within a reliable 

range (often above 0.80), suggesting the model's high confidence 

in its predictions. These qualitative findings are consistent with 

the evaluation metrics (mAP, Precision, and Recall) stated earlier, 

indicating that YOLOv9s is well-suited for use in intelligent 

monitoring systems intended at improving the security and 

operational integrity of outdoor fiber-optic networks. 

Figure 4: Detection results of the trained dataset 

5.4. Performance Comparison Analysis of YOLOv9s, 

YOLOv8s, and YOLOv5s Models 

Table 2 provides a complete comparison of the performance of 

three object detection models YOLOv5s, YOLOv8s, and the more 

advanced YOLOv9s on the same unique dataset used for 

surveillance of pole-mounted optical fiber infrastructure. 

YOLOv9s surpasses its predecessors on every performance 

metric. In terms of precision, YOLOv9s achieves 86.2%, 

suggesting that it has the lowest rate of false positives, or 

inaccurate predictions regarding the presence of objects. 

YOLOv8s and YOLOv5s follow with 81.4% and 78.5% accuracy, 

respectively. This increased trend in precision demonstrates the 

gains in detection accuracy of newer YOLO models, which are 

mostly attributable to advancements in model architecture and 

feature extraction capabilities. 

The recall score, which measures the model's ability to detect all 

relevant objects, is again greatest in YOLOv9s, at 88.7%, 

outperforming YOLOv8s (84.3%) and YOLOv5s (81.6%). This 

high recall indicates that YOLOv9s can detect almost all 

occurrences of poles, humans, and animals activities without 

omission. Furthermore, the mean Average Precision (mAP@0.5), 

a crucial criterion for detection performance, reaches 90.4% for 

YOLOv9s, beating YOLOv8s (87.2%) and YOLOv5. 

Furthermore, in the more stringent mAP@0.5:0.95 metric, 

YOLOv9s leads with 75.1%, followed by YOLOv8s at 71.5% and 

YOLOv5s at a significantly lower 57.2%. This demonstrates 

YOLOv9s' greater capacity to reliably identify items across varied 

degrees of overlap (IoU thresholds), making it ideal for 

complicated, real-world situations. 

Table 2: The comparison with Other YOLO Models 

Model 
Precisi

on (%) 

Rec

all 

(%) 

mAP@

0.5 (%) 

mAP@0.5:

0.95 (%) 

Infere

nce 

Time 

(ms) 

YOLO

v5s 
78.5 81.6 86.4 57.2 80.5 

YOLO

v8s 
81.4 84.3 87.2 71.5 73.2 

YOLO

v9s 
86.2 88.7 90.4 75.1 59.3 

 

Another considerable improvement is observed in inference time, 

with YOLOv9s having the fastest processing speed at 59.3 ms per 
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image, compared to YOLOv8s at 73.2 ms and YOLOv5s at 80.5 

ms. This latency reduction is critical for real-time deployment in 

security and surveillance systems, where rapid detection and 

response are required. YOLOv9s' efficiency is due to its 

optimized backbone, transformer integration, and improved 

feature fusion modules, which reduce computational overhead 

while maintaining accuracy. Overall, the comparison research 

shows that YOLOv9s not only has the best detection performance 

but also provides faster and more resource-efficient inference, 

making it the best choice for intelligent monitoring systems in 

dynamic outdoor environments. 

5.5. Effect of Training Epochs on YOLOv9s Model Accuracy 

Table 3 shows how the performance of the YOLOv9s model 

improves as the number of training epochs grows, shedding light 

on the model's learning behavior over time. After 20 epochs, the 

model has a precision of 80.7%, a recall of 73.5%, and a 

mAP@0.5 of 77.8%. While these initial numbers indicate that the 

model is learning to recognize object features and associations in 

the dataset, the comparatively low recall and mAP@0.5:0.95 

(58.4%) indicate that more training is required to capture more 

complex patterns and reduce misdetections. The performance at 

this stage reflects the model's early phases of learning, when it 

still misses numerous true items and has not yet generalized 

successfully. As the training advances to 50 and then 100 epochs, 

significant improvements are seen across all measures. At 50 

epochs, the precision rises to 82.8% and the recall to 84.1%, 

indicating that the model is successfully learning to recognize 

more relevant objects with fewer false positives. The mAP@0.5 

increases significantly to 87.6%, whereas the more severe 

mAP@0.5:0.95 improves to 70.5%, indicating improved 

localization accuracy across several IoU thresholds. By 100 

epochs, YOLOv9s has achieved peak performance with 86.2% 

precision, 88.7% recall, 90.4% mAP@0.5, and 75.1% 

mAP@0.5:0.95.  

Table 3: Effect of Training Epochs on Model Accuracy 

Epochs Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%) 

20 80.7 73.5 77.8 58.4 

50 82.8 84.1 87.6 70.5 

100 86.2 88.7 90.4 75.1 

 

These findings demonstrate that longer training enables the model 

to increase its feature extraction, generalization, and detection 

performance. The learning curve shows that YOLOv9s improves 

significantly from lengthier training, making it ideal for high-

accuracy detection tasks in real-world settings. 

 

Figure 5: The Evaluation Metrics Across Training Epochs 

Figure 5 presents the progression of four key evaluation metrics 

Precision, Recall, mAP@0.5, and mAP@0.5:0.95 across training 

epochs 20, 50, and 100. As training advances, all metrics show a 

clear upward trend, reflecting improved model performance. 

Precision rises from 80.7% to 86.2%, while Recall increases more 

significantly from 73.5% to 88.7%, suggesting better detection 

capabilities. Similarly, mAP@0.5 grows from 77.8% to 90.4%, 

and mAP@0.5:0.95 improves from 58.4% to 75.1%, indicating 

enhanced accuracy over both easy and challenging detection 

thresholds. Overall, the chart demonstrates that extended training 

substantially boosts the model’s effectiveness. 

6. Conclusion 

This study effectively confirmed the successful results of the 

YOLOv9s model in detecting anomalies around fiber optic 

infrastructure, notably in pole-mounted scenarios using a 

complete and methodical deep learning approach. The primary 

goal of improving intelligent video surveillance for infrastructure 

safety was realized by exploiting YOLOv9s' significant 

architectural upgrades and detection capabilities. The model was 

trained and tested on a well-curated, annotated dataset, with an 

emphasis on dataset consistency, class label assignment, and 

robust augmentation strategies to improve generalization across a 

range of real-world scenarios. A notable accomplishment of this 

work is the evident performance superiority of YOLOv9s over its 

predecessors, YOLOv8s and YOLOv5. YOLOv9s achieved an 

impressive precision of 86.2%, a recall of 88.7%, and a high 

mAP@0.5 of 90.4%, with mAP@0.5:0.95 reaching 75.1%. These 

measurements illustrate the model's ability to reliably detect and 

categorize a wide range of object types, including poles, human, 

and animals’ motions, as well as its constant performance over 

different localization criteria. Furthermore, the model maintained 

a competitive inference time of 59.3 ms, demonstrating its 

appropriateness for real-time deployment in intelligent 

surveillance systems. Another notable addition of this work is the 

systematic training configuration and implementation of targeted 

augmentation procedures, which considerably improved model 
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robustness. The precision-recall and confidence curves supported 

YOLOv9s' ability to balance detection accuracy and confidence 

scores. Finally, the study confirms YOLOv9s as a highly effective 

approach for automated anomaly detection in fiber optic 

monitoring systems. Its excellent accuracy, efficiency, and real-

time performance make it a feasible model for implementation in 

smart infrastructure protection applications, opening the door to 

more adaptable and intelligent security solutions in the telecom 

sector and beyond. 

Future research will aim to systematically expand the dataset by 

incorporating diverse environmental conditions (e.g., rain, fog, 

and varying daylight), multiple camera perspectives, and a 

broader taxonomy of human and animal activities. This is 

hypothesized to enhance the model’s robustness and 

generalization across heterogeneous real-world scenarios. A 

second research objective involves integrating night vision and 

thermal infrared imaging modalities to empirically evaluate 

improvements in detection accuracy under low-light or visually 

obstructed conditions. Additionally, lightweight optimization 

techniques such as model quantization, pruning, and knowledge 

distillation will be explored to facilitate efficient real-time 

inference on edge computing devices embedded within fiber-optic 

surveillance networks. Lastly, the inclusion of temporal sequence 

modeling (e.g., using ConvLSTM or transformer-based video 

encoders) will be investigated to assess its potential in improving 

activity recognition and anomaly detection over time, thus 

supporting the development of intelligent, context-aware 

monitoring systems. 
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