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 Abstract  

Hybrid Renewable Energy Systems (HRES), which integrate solar and wind power, offer an 

effective solution for addressing energy demands in rural, off-grid areas. Despite the abundant 

availability of solar energy during the day and continuous wind energy, the intermittent nature 

of these resources presents challenges to system efficiency. Maximum Power Point Tracking 

(MPPT) techniques are crucial for optimizing energy extraction from photovoltaic (PV) panels 

and wind turbines, but fluctuating environmental conditions complicate their performance. This 

study adopted a narrative review approach and 127 related articles on the integration of 

Artificial Intelligence (AI) in MPPT, focusing on AI-driven algorithms like Artificial Neural 

Networks (ANNs), Fuzzy Logic Control (FLC), and Reinforcement Learning (RL), which enhance 

system performance by providing adaptive, predictive, and self-learning capabilities were 

successfully reviewed. ANNs offer high accuracy by predicting optimal operating points based 

on historical data, but require extensive datasets and computational resources. FLC manages 

uncertainty and nonlinearity using fuzzy rules but demands significant computational power and 

expert knowledge. RL autonomously learns optimal strategies and adapts in real time, though it 

requires substantial training data and computational resources. The incorporation of these AI 

techniques into HRES facilitates real-time optimization, improving energy efficiency and 

ensuring a reliable power supply despite dynamic environmental conditions. Additionally, the 

practical fabrication of AI-enhanced hybrid systems involves careful selection of solar panels, 

wind turbines, energy storage solutions, and power electronics, along with the implementation 

of AI-based MPPT controllers on microcontrollers or embedded processors. Simulation and 

experimental validation confirm the efficacy of these approaches, showcasing their potential to 

optimize power extraction and enhance energy reliability in remote applications, paving the way 

for efficient renewable energy systems in rural and off-grid areas. 
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1.0 Introduction  

Over the last few decades, there has been a dramatic change in the 

global energy landscape, with a greater focus on sustainability and 

a reduction in the environmental impact of fossil fuels [1]. The 

world's electricity supply was primarily generated by fossil fuels 

in the middle of the 20th century, but worries about resource 

depletion and greenhouse gas emissions prompted research into 

renewable energy sources [2,3]. The oil crises of the 1970s further 

accelerated research into alternative energy sources, prompting 

significant investments in solar, wind, and hydropower 

technologies. By the late 20th century, advancements in 

photovoltaic (PV) technology and wind turbine efficiency made 

renewable energy more viable [4]. Government policies and 

incentives, particularly in countries like Germany and Denmark, 

facilitated the deployment of large-scale renewable energy 

projects [5]. The early 2000s saw a rapid decline in the cost of 

solar panels and wind turbines, driven by technological 

improvements and mass production, making these energy sources 

increasingly competitive with conventional fossil fuels. Figure 1 

illustrates the current global energy mix and projects its 

anticipated distribution by 2032. 

 

Figure 1: Non-hydro renewable energy shares of global 

electricity [4,5] 

In rural off-grid areas, Hybrid Renewable Energy Systems 

(HRES) have emerged as a practical and sustainable solution to 

electrification challenges. These systems particularly those that 

integrate solar and wind power take advantage of the 

complementary characteristics of the two sources: solar energy is 

most abundant during daylight hours, while wind energy is often 

available both day and night. Early implementations of HRES 

frequently relied on diesel generators for backup power. 

However, significant advancements in battery storage 

technologies during the 2010s enabled a shift toward more self-

sufficient renewable hybrid systems, reducing dependence on 

fossil fuels [5,6]. 

 

Figure 2: Statistical Review of World Energy (2024) [7] 

Global electricity generation from major renewable sources, such 

as hydropower, wind, solar, and other renewables, including 

biofuels, has changed significantly between 1965 and 2023, as 

shown in Figure 2. Hydropower has traditionally dominated, 

steadily increasing to over 4,000 TWh by 2020 before stabilizing. 

Meanwhile, wind and solar energy began to show notable growth 

around 2000 and 2010, respectively [7]. Their expansion has been 

especially rapid in recent years, with solar power now 

approaching wind in total output. Other renewables, including 

bioenergy, have seen gradual growth but remain the smallest 

contributors. This trend reflects a clear global shift toward a more 

diversified renewable energy mix, with wind and solar emerging 

as major contributors. The inherent intermittency of solar 

irradiance and the fluctuating nature of wind speed continue to 

pose substantial limitations to the reliability and operational 

efficiency of HRES [8]. Maximum Power Point Tracking (MPPT) 

techniques have long been used by researchers to optimise energy 

capture from wind energy converters and photovoltaic arrays in 

order to lessen these limitations. In this field, traditional MPPT 

algorithms like Perturb and Observe (P&O) and Incremental 

Conductance (IC), which became popular in the 1990s and early 

2000s, have been fundamental methods [9,10]. Nonetheless, these 

classical approaches often exhibit degraded performance under 

rapidly varying environmental conditions, resulting in suboptimal 

power extraction and decreased system efficiency [11]. 

In response to these limitations, the advent of AI and ML 

technologies, particularly since the late 2010s, has ushered in a 

new generation of intelligent MPPT controllers [12,13]. These 

advanced methods capitalize on adaptive learning, predictive 

modeling, and real-time decision-making capabilities to 

dynamically adjust to environmental fluctuations, thereby 

enhancing the overall performance of energy harvesting systems 

[14]. AI-based MPPT schemes, such as those utilizing artificial 

neural networks, fuzzy inference systems, and reinforcement 

learning frameworks, have consistently outperformed traditional 
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techniques, delivering more stable and efficient energy 

conversion within hybrid systems [15,16]. 

Given the increasing importance of renewable energy in 

achieving global sustainability goals, the development and 

integration of intelligent MPPT methodologies are crucial for the 

advancement of HRES technologies. This review, therefore, 

investigates the role of AI-driven MPPT algorithms in solar-wind 

hybrid systems, with a focus on improving energy yield, 

addressing intermittency challenges, and enhancing system 

reliability in off-grid and remote applications [17]. The primary 

contributions of this review are outlined as follows: 

➢ A thorough examination of AI-based MPPT methods in 

HRES An extensive examination of AI-driven MPPT 

methods, such as Reinforcement Learning (RL), Fuzzy 

Logic Control (FLC), and Artificial Neural Networks 

(ANNs), is given in this article. It addresses the 

difficulties brought on by shifting environmental 

circumstances and emphasises their benefits, drawbacks, 

and useful applications in maximising power extraction 

from solar and wind energy systems. 

➢ Evaluation of AI-Enhanced Hybrid Renewable Energy 

System Design and Implementation: The study examines 

the practical aspects of integrating AI-based MPPT 

controllers into hybrid renewable energy systems. It 

discusses the selection of key system components, 

including solar panels, wind turbines, energy storage 

solutions, and power electronics, as well as the 

implementation of AI controllers on microcontrollers or 

embedded processors for real-time optimization. 

➢ Validation of AI-Driven MPPT Approaches through 

Simulation and Experimental Studies: The paper reviews 

simulation models and experimental results that 

demonstrate the effectiveness of AI-based MPPT 

techniques in improving energy efficiency and ensuring 

a stable power supply. This validation supports the 

feasibility of deploying AI-enhanced hybrid systems for 

rural and off-grid electrification, contributing to the 

advancement of sustainable energy solutions. 

2.0 Methodology  

A narrative review methodology was utilized to critically 

synthesize and evaluate the existing body of research related to 

the optimization of HRES through Artificial Intelligence (AI). 

The review specifically focused on AI-based MPPT techniques in 

hybrid solar-wind systems. By analyzing 127 studies, this review 

aimed to provide a comprehensive understanding of the current 

advancements, emerging trends, and persistent challenges in 

applying AI to renewable energy systems. The narrative approach 

allowed for a broad and descriptive synthesis of the findings, 

highlighting the role of AI in improving the efficiency and 

reliability of renewable energy systems. 

2.1 Search Strategy 

The literature review was carried out through a systematic search 

of various reputable academic databases, including Google 

Scholar, IEEE Xplore, ScienceDirect, SpringerLink, and Scopus. 

The search strategy incorporated a range of keywords and phrases 

such as "AI-based MPPT," "Hybrid Renewable Energy Systems," 

"solar-wind hybrid systems," "Artificial Neural Networks in 

MPPT," "Fuzzy Logic Control in renewable energy," and 

"Reinforcement Learning in MPPT," The focus was on papers 

published between 2010 and 2025 to capture the most up-to-date 

research. The search aimed to identify both theoretical and 

practical applications of AI in optimizing hybrid solar-wind 

systems, ensuring a well-rounded review of the literature. 

2.2 Inclusion Criteria 

To ensure the relevance and quality of the selected studies, several 

inclusion criteria were established. Only studies published in 

English were considered, with a particular emphasis on peer-

reviewed journal articles, conference papers, and technical 

reports. The selected studies needed to focus on AI-based 

optimization techniques for MPPT in hybrid solar-wind systems, 

specifically employing ANNs, FLC, and RL. Research that 

explored the application of these techniques in rural, off-grid, or 

low-resource areas was prioritized. The studies also needed to 

demonstrate clear methodology, robust data analysis, and reliable 

results, including those utilizing simulation models, experimental 

setups, or case studies. Additionally, the studies had to provide 

insights into the efficiency and optimization of MPPT techniques 

within HRES. 

2.3 Exclusion Criteria 

The selection process was further refined by applying specific 

exclusion criteria to eliminate irrelevant or low-quality studies. 

Non-peer-reviewed sources such as books, editorials, opinion 

papers, and unpublished materials were excluded to ensure the 

credibility of the review. Studies that were not directly related to 

AI-based MPPT techniques, or those that focused solely on solar 

or wind systems without involving hybrid configurations or AI 

optimization, were also excluded. Furthermore, studies with poor 

methodological quality, lacking clear analysis or sufficient data, 

were disregarded. Non-English publications were excluded due to 

language barriers, and duplicate studies with overlapping content 

were removed to avoid redundancy. 

3.0 Literature Review 

AI-based MPPT techniques have emerged as advanced solutions 

to address the limitations of traditional methods in renewable 

energy systems [17]. These AI-driven approaches leverage 
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machine learning and optimization techniques to adapt to 

environmental changes more effectively than conventional 

methods [18,19]. One of the key AI-driven methods is ANNs, 

which utilize historical data to predict optimal operating points for 

PV panels and wind turbines [20]. ANNs offer high accuracy in 

tracking rapid fluctuations in irradiance and wind speed, making 

them particularly effective for dynamic conditions where 

traditional MPPT methods struggle [21]. Another prominent 

technique is FLC, which provides robust decision-making 

capabilities under uncertainty [22]. FLC is especially well-suited 

for hybrid renewable energy systems with multiple inputs and 

nonlinearities, where precise control is challenging. Additionally, 

RL has gained attention in MPPT applications due to its ability to 

autonomously learn and improve tracking strategies [23,24]. By 

continuously interacting with the system and optimizing control 

actions, RL-based MPPT adapts in real-time to changing 

environmental conditions, enhancing performance and efficiency. 

Comparative studies have shown that AI-based MPPT techniques 

generally outperform traditional methods, offering superior 

convergence speed, higher energy efficiency, and greater 

adaptability to varying environmental conditions, making them 

increasingly indispensable for modern renewable energy systems 

[25]. 

3.1 Artificial Neural Networks 

In renewable energy systems, artificial neural networks have 

emerged as a potent AI-driven method for MPPT [26]. Because 

ANNs are built to learn from past data, they can forecast when PV 

panels and wind turbines will operate at their best. ANNs can 

swiftly adjust to changes in environmental variables, such as 

variations in wind speed and solar irradiation, thanks to their 

capacity to learn from and generalise from historical data. The 

primary benefit of employing ANNs in MPPT is their high 

precision, especially when it comes to tracking abrupt changes in 

wind speed and irradiance, which present difficulties for more 

conventional techniques like P&O and IC. The ability of ANNs to 

manage intricate, non-linear interactions between the system's 

inputs (temperature, wind speed, and solar irradiance) and output 

(electricity) is one of its main benefits [27]. ANNs are very useful 

for real-time modifications in hybrid solar-wind systems because 

they can predict the system's behaviour based on data-driven 

learning, in contrast to traditional methods that frequently rely on 

basic mathematical models and assumptions [28, 29]. Large 

datasets can also be used to train ANNs, which enables them to 

adjust to a wide range of environmental circumstances and 

increase tracking efficiency even in difficult situations. 

 
Figure 3: MATLAB Simulink model of ANN-based MPPT 

system [26] 

As depicted in Figure 3, the trained ANN model takes ambient 

temperature and solar irradiance as input parameters, both 

calibrated to reflect real-world environmental conditions (ECs) 

relevant to PV system operation [26]. Based on these inputs, the 

ANN predicts the optimal output voltage of the PV panel, which 

is then compared against the actual voltage measured from the 

system. To enhance the precision, stability, and dynamic response 

of the ANN-based MPPT algorithm, a Proportional-Integral (PI) 

controller is employed in conjunction with the neural model 

[27,28]. 

While ANNs provide powerful nonlinear modeling capabilities 

and adaptability to varying environmental dynamics, their 

application in MPPT control is not without limitations. One of the 

primary challenges is the requirement for large volumes of high-

fidelity training data to achieve accurate predictions. This data 

demand is particularly problematic in remote or resource-

constrained regions where environmental sensing infrastructure 

may be inadequate or absent [29,30]. Additionally, the training 

phase of ANNs is computationally intensive, often necessitating 

prolonged processing time and substantial computational 

resources. Another critical concern is the issue of overfitting, 

where the model performs exceptionally well on training data but 

fails to generalize to novel or fluctuating operating conditions, 

thereby limiting its real-world applicability [31,32]. Moreover, 

the opaque nature of ANN decision-making processes limits 

interpretability, an important drawback in energy systems that 

require transparency, auditability, and trust, especially in critical 

or regulated applications [26]. 

An input layer, one or more hidden layers, and an output layer 

make up the mathematical structure of an ANN in MPPT, which 

can be characterised as a multi-layer network [33]. The output 

layer supplies the ideal voltage and current values for the PV 

panel or wind turbine, while the input layer receives the 

environmental factors (temperature, wind speed, and irradiance) 

[34]. Neurones that use activation functions like the sigmoid, 

hyperbolic tangent, or ReLU (Rectified Linear Unit) are found in 
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the hidden layers. Backpropagation is used to modify the weights 

assigned to each neurone during the training phase in order to 

reduce the discrepancy between the actual power generated and 

the projected output [33, 34]. The mathematical model for an 

ANN-based MPPT can be formulated as follows: 

Input Layer: Let x = [x1,x2,...,xn] represent the input features 

(solar irradiance, wind speed, temperature). 

Hidden Layers: The output from the ith neuron in the jth hidden 

layer can be expressed in equation (1) 

ℎ𝑗 =  𝑓 (∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗

𝑛

𝑖=1

)                                    (1) 

Where: wij are the weights, xi are the inputs, bj is the bias term, 

and f is the activation function. 

Output Layer: The optimal operating point, such as voltage 

(Vmppt) and current (Imppt) is determined by the output of the 

network as shown in inequation (2) 

𝑦𝑘 =  𝑓 (∑ 𝑤𝑗𝑘ℎ𝑗 + 𝑏𝑘

𝑚

𝑗=1

)                                    (2) 

Where; m is the number of hidden neurons and yk represents the 

output of the network (optimal power point). 

A loss function, usually the Mean Squared Error (MSE), is used 

in the ANN's training phase to measure the difference between the 

PV system's actual and forecast output power. To reduce 

prediction error and enhance model performance, an optimisation 

approach like gradient descent is used to iteratively adjust the 

model's internal weights based on this error measure [35]. While 

ANN-based MPPT techniques offer substantial benefits in terms 

of nonlinear modeling and adaptive control, their practical 

implementation is often constrained by high computational 

demands and the risk of overfitting, particularly when training 

data are limited or unrepresentative of diverse environmental 

conditions. Nevertheless, when integrated with robust data 

acquisition and preprocessing methods, ANN-based controllers 

have demonstrated considerable success in maximizing energy 

harvesting efficiency in renewable energy systems [36]. 

3.1.1 Fuzzy Logic Control (FLC) 

FLC is an advanced control method that has gained widespread 

use in MPPT applications for renewable energy systems, 

particularly in hybrid solar-wind configurations [37]. FLC is well-

suited for situations involving uncertainty, vagueness, and 

nonlinearity, which are common in real-world systems [38]. 

Unlike traditional control methods that rely on precise, linear 

models, FLC uses linguistic variables and fuzzy sets to represent 

and process information [39.40]. This makes it particularly 

effective in hybrid systems, where multiple inputs, such as solar 

irradiance, wind speed, temperature, and load demands, interact 

in complex, nonlinear ways. 

One of the key advantages of FLC in MPPT is its ability to make 

robust decisions under uncertain and fluctuating environmental 

conditions. Rather than relying on exact measurements or 

predictions, FLC uses fuzzy rules based on human-like reasoning 

to determine the optimal operating points [41]. For instance, 

instead of needing an exact value for solar irradiance, the system 

can make decisions based on fuzzy terms such as "high," 

"medium," or "low." This flexibility allows FLC to adapt 

effectively to varying environmental conditions, such as rapid 

changes in wind speed or cloud cover, which are often 

problematic for traditional MPPT methods [42]. The structural 

components of fuzzy are depicted in Figure 4 and mathematically 

expressed in equation (2). 

 
Figure 4: The structure and components of a fuzzy logic 

system [40] 

FLC is particularly advantageous for hybrid renewable systems 

because it can integrate multiple inputs seamlessly. In a hybrid 

solar-wind system, FLC can combine data from both energy 

sources, accounting for their intermittent nature and non-linear 

interactions. This makes it more adaptable and resilient in 

optimizing the performance of the system. Additionally, FLC 

does not require precise mathematical models of the system, 

making it a more flexible solution when the system’s 

characteristics are difficult to model accurately [43]. 

However, FLC also has some disadvantages. The primary 

challenge is that the design of the fuzzy rules and membership 

functions can be complex and requires expert knowledge. The 

effectiveness of the FLC heavily depends on the quality of the 

rules and the membership functions used, and poor rule design 

can lead to suboptimal performance. Additionally, FLC is 

computationally more intensive than simpler MPPT methods such 

as P&O, and the tuning of the fuzzy logic system can be time-

https://doi.org/10.59568/KJSET-2025-4-1-25


Val et al. / KJSET: Vol. 4, No. 1, (April 2025)   262-282.   https://doi.org/10.59568/KJSET-2025-4-1-25 

KJSET | 267                                          https://doi.org/10.59568/KJSET-2025-4-1-25                                     https://kjset.kiu.ac.ug/ 

consuming [44]. While it does not require precise mathematical 

models, an inadequate understanding of system behavior can 

hinder the FLC’s effectiveness in certain scenarios. 

Mathematically, FLC operates by transforming crisp inputs into 

fuzzy values and then applying fuzzy rules to make decisions. The 

process can be broken down into the following steps [44,43]: 

• Fuzzification: The crisp input values (e.g., solar 

irradiance, and wind speed) are mapped to fuzzy sets 

using membership functions. For example, the solar 

irradiance could be mapped to fuzzy sets such as "low," 

"medium," and "high." 

μ irradiance(x) = membership function for solar irradiance 

• Rule Evaluation: Fuzzy rules are defined based on expert 

knowledge or empirical data. A typical fuzzy rule might 

be: If solar irradiance is high and wind speed is low, then 

increase the operating voltage. The fuzzy rule set is 

evaluated using logical operators (AND, OR) to 

determine the output fuzzy set. 

• Defuzzification: Once the fuzzy outputs are computed, 

they need to be converted back to crisp values (e.g., 

optimal voltage and current). This is done through a 

process called defuzzification. One common method is 

the centroid method, which calculates the center of 

gravity of the output fuzzy set to determine the optimal 

control value is computed as shown in equation (3) 

Uopt =
∑ 𝛍𝐢𝐱𝐢𝑛

𝑖=1

∑ 𝛍𝐢𝑛
𝑖=1

                                       (3) 

Where: uopt is the defuzzified output (optimal voltage or current), 

μi is the degree of membership of each fuzzy set, and xi is the 

corresponding crisp value. 

The fuzzy logic control system adapts to the variations in 

environmental conditions by continuously adjusting the operating 

point of the system based on the fuzzy outputs [45]. This ability 

to process multiple inputs and deal with uncertainties makes FLC 

particularly useful in optimizing the performance of hybrid 

renewable energy systems, even in challenging conditions. 

3.1.2 Reinforcement Learning (RL) 

RL has emerged as an innovative and effective approach for 

MPPT in renewable energy systems [46]. Unlike traditional 

methods, which follow predefined algorithms or rules, RL-based 

MPPT autonomously learns optimal power tracking strategies by 

continuously interacting with the system. RL models are designed 

to make decisions through trial and error, gradually improving 

their performance over time based on feedback from the 

environment [47]. This capability makes RL particularly well-

suited for dynamic and unpredictable environments, such as those 

encountered in hybrid solar-wind systems, where both solar 

irradiance and wind speed fluctuate rapidly and unpredictably 

[48]. 

The key advantage of RL in MPPT is its ability to optimize control 

actions in real-time without requiring explicit mathematical 

models of the system [49]. Traditional MPPT methods like P&O 

or IC rely on predefined rules or equations, whereas RL learns the 

optimal strategy through interaction with the system, adjusting its 

behavior to maximize energy harvesting efficiency [50]. This 

adaptability is particularly valuable in hybrid systems where the 

combination of solar and wind power sources must be efficiently 

managed in the presence of varying environmental conditions. 

Another notable advantage of RL is its self-improving nature. 

Once an RL model is trained, it can continue to learn and adapt 

from new data, making it capable of fine-tuning its control 

strategies over time [51]. This continuous improvement allows 

RL-based MPPT systems to enhance performance as they 

experience more operational scenarios, which is a key feature in 

environments with highly variable conditions. Moreover, RL can 

effectively handle complex, multi-input, and nonlinear systems, 

making it ideal for hybrid renewable energy setups, where solar 

and wind sources interact in intricate ways [52]. Figure 5 shows 

the controller of the Wind Energy Conversion System (WECS), 

which utilizes a typical block diagram of a RL-based, model-free 

Q-learning MPPT algorithm. This algorithm learns an optimal 

policy by mapping system states to control actions in real time, 

updating action values based on the rewards received. 

 
Figure 5: Block diagram of RL-based MPPT algorithm [46] 

However, RL-based MPPT also comes with certain challenges 

and disadvantages. One major limitation is the need for large 

amounts of training data and computational resources [53]. The 

process of training an RL agent involves extensive simulation or 

real-world interaction, which can be computationally intensive 

and time-consuming. Additionally, RL models require a well-

designed reward function that accurately reflects the desired 

outcomes, such as maximizing power output. Designing an 

effective reward function can be challenging, as it must balance 

various factors such as system stability, energy efficiency, and 
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responsiveness to environmental changes. Furthermore, RL 

models may suffer from issues such as overfitting to specific 

conditions or insufficient exploration during the training phase, 

which can result in suboptimal performance when faced with new, 

unseen environmental conditions [54]. 

RL-based MPPT is grounded in the formalism of agent-

environment interaction, where the agent learns to optimize 

control decisions through trial-and-error exploration. The 

framework comprises four key components: states, actions, 

rewards, and the policy. In the context of hybrid renewable energy 

systems, the agent represents the intelligent controller, the state st 

encapsulates system parameters such as solar irradiance and wind 

speed at time step t, and the action corresponds to control 

operations such as adjusting the duty cycle or reference voltage. 

Upon executing an action, the system transitions to a new state 

st+1 and yields a reward rt, which reflects the instantaneous utility, 

typically associated with the power output or tracking accuracy 

[55,46]. 

The overarching objective of the RL agent is to learn an optimal 

policy π(s), which maps each state to an action that maximizes the 

expected cumulative reward over time. One of the widely adopted 

algorithms for implementing this decision-making process is Q-

learning, a model-free RL technique that iteratively updates the 

state-action value function, known as the Q-value, as shown in 

equation (3). This formulation allows the RL agent to 

continuously improve its decision-making policy, even under 

varying environmental conditions, making it a robust solution for 

real-time MPPT in solar-wind hybrid energy systems. 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡 + 𝑎𝑡)

+ α[rt + 𝛄𝐦𝐚𝐱𝐐(𝐬𝐭 + 𝟏, 𝐚′) − 𝐐(𝐬𝐭, 𝐚𝐭)]  (3) 

Where: Q(st, at) = Q-value of taking action at state (st), α = learning 

rate, γ = discount factor, rt is the reward received after taking 

action at state st, maxQ(st+1, a′) is the maximum expected future 

reward for the next state st+1. Over time, the RL agent learns the 

optimal policy π(s), mapping states to actions that maximize 

cumulative rewards, thereby achieving an optimal MPPT strategy 

for the system [46,50].While RL-based MPPT techniques show 

great potential in optimizing energy harvesting, their high 

computational cost and need for a large amount of training data 

present practical challenges. Nonetheless, as computing power 

increases and more efficient algorithms are developed, RL is 

becoming an increasingly viable approach for enhancing the 

performance and adaptability of renewable energy systems 

[54,51]. 

Table 1: Comparison of ANNs, FLC, and RL MPPT in 

renewable energy systems 
Featur

e 

Artificial Neural 

Networks (ANNs) 

Fuzzy Logic 

Control (FLC) 

Reinforcement 

Learning (RL) 

Approa

ch 

Data-driven 

learning using 

Uses fuzzy rules 

and linguistic 

Autonomous learning 

through trial and error 

historical data to 

predict optimal 

operating points. 

variables to make 

decisions under 

uncertainty. 

to optimize power 

tracking. 

Advant

ages 

High accuracy in 

tracking rapid 

fluctuations in 
irradiance and 

wind speed. 

Robust under 

uncertain and 

fluctuating 
environmental 

conditions. 

Adapts and improves 

over time based on 

feedback. 

Handles complex, 
non-linear 

relationships. 

Can handle 
multiple inputs and 

complex 

interactions. 

Does not require 
explicit mathematical 

models. 

Effective for 

hybrid solar-wind 

systems. 

Flexibility with 

rule-based control 

without precise 
models. 

Continuous learning 

and improvement 

with more 
operational data. 

Disadv

antages 

Requires 

substantial training 
data and 

computational 

resources. 

Design of fuzzy 

rules and 
membership 

functions can be 

complex. 

High computational 

cost and need for 
large amounts of 

training data. 

Overfitting can 

occur with 

insufficient data 
diversity. 

Computationally 

more intensive 

than simpler 
methods. 

Requires a well-

designed reward 

function to balance 
multiple objectives. 

Limited 

interpretability and 
transparency. 

Effectiveness 

depends on the 
quality of rules 

and membership 

functions. 

Overfitting or 

insufficient 
exploration can lead 

to suboptimal 

performance. 

Mathe

matical 

Model  

Multi-layer 

network with 

input, hidden, and 
output layers. 

Fuzzification, rule 

evaluation, and 

defuzzification of 
inputs. 

Agent-based learning 

with states, actions, 

and rewards (Q-
learning algorithm). 

Activation 

functions like 
sigmoid, ReLU, 

Membership 

functions map 
crisp values to 

fuzzy sets. 

Q-value update: Q(st, 

at) = Q(st, at) + α[rt + 
γmaxQ(st+1, a') - 

Q(st, at)]. 

Compu
tational 

Cost 

High due to the 
training phase 

(large datasets). 

Moderate, depends 
on the complexity 

of the fuzzy rule 

base. 

High due to large 
amounts of training 

data and simulations. 

Real-

time 

Perfor
mance 

Suitable for real-

time adjustments 

in dynamic 
conditions. 

Performs well 

under real-time 

fluctuations with 
fuzzy decision-

making. 

Learns optimal 

strategies in real-

time, improving over 
time. 

Trainin
g/Data 

Requir
ements 

Needs large 
datasets for 

training, especially 
in remote areas. 

Requires expert 
knowledge to 

design fuzzy rules 
and membership 

functions. 

Requires large 
datasets for training 

and fine-tuning 
reward functions. 

Flexibil
ity/Ada

ptabilit

y 

Can adapt well to 
a variety of 

conditions after 

training. 

Highly adaptable 
to different 

environmental 

conditions with 
fuzzy rules. 

Learns from 
experience and 

adapts to new data 

over time. 

 

These methods in Table 1 have their strengths and challenges, and 

the choice of method depends on the specific needs of the 

renewable energy system and the available resources for training, 

computation, and real-time adjustments. 

3.1.3. Fabrication of AI-Enhanced Hybrid Solar-Wind 

Systems 

The physical implementation of AI-based MPPT in hybrid solar-

wind energy systems requires careful integration of hardware 

components and control strategies to optimize energy harvesting 
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[52]. This process involves both hardware fabrication and the 

development of robust control algorithms to manage system 

performance under dynamic environmental conditions [53]. The 

primary goal is to design a system that can seamlessly combine 

solar and wind power sources while utilizing AI-based MPPT 

techniques to ensure maximum efficiency. In terms of hardware, 

the system must include high-quality PV panels and wind 

turbines, each equipped with appropriate power electronic 

converters (e.g., DC-DC converters for PV panels and rectifiers 

for wind turbines) to interface with the energy storage system, 

typically a battery bank [54,55]. The hybrid system also requires 

a power management unit (PMU) to control and distribute power 

between the solar and wind sources. The key component in this 

setup is the MPPT controller, which plays a critical role in 

dynamically adjusting the operating points of both the PV and 

wind systems based on real-time environmental conditions 

[56,57]. 

The system must be able to process a broad range of inputs from 

sensors that track variables like solar irradiance, wind speed, 

temperature, and battery voltage in order to execute AI-based 

MPPT [58,59]. These sensors feed data into the AI algorithms 

(e.g., ANN, FLC, or RL), which use this information to optimize 

power output in real-time. The control strategies for hybrid 

systems are more complex compared to single-source systems due 

to the need to manage the interaction between both energy sources 

and ensure the smooth transfer of power to the load or storage 

system without overloading any component [60,61]. 

AI algorithms are typically implemented on a microcontroller or 

a digital signal processor (DSP) to ensure fast and reliable 

decision-making [62,63]. The algorithms receive real-time data 

inputs, process them using machine learning models, and output 

control signals to adjust the operating points of the converters 

[64,65]. For instance, in the case of ANNs, the system uses a pre-

trained model to predict the optimal operating points (voltage and 

current) for both PV and wind systems [17,18]. The system then 

adjusts the converters to ensure that the maximum power is 

extracted from both sources. Similarly, FLC uses rule-based 

reasoning to make decisions about power optimization based on 

fuzzy input values. Additionally, communication protocols such 

as Modbus, I2C, or CAN (Controller Area Network) are often 

used to allow different components (sensors, controllers, 

converters, and storage units) to exchange data. The integration of 

these components into a coherent, coordinated system is essential 

to ensure that the energy generation and storage processes are 

optimized [52,53]. A real-time monitoring system is also critical 

for evaluating the system's performance and diagnosing potential 

issues such as hardware failures or environmental changes that 

may impact energy production. 

In the fabrication of renewable energy systems, several key 

hardware components are integral to their functionality and 

performance. PV panels serve as the primary solar energy 

harvesters, converting incident sunlight into electrical power 

through the photovoltaic effect [66]. Complementing this, wind 

turbines capture the kinetic energy of wind and transform it into 

electrical energy via electromechanical conversion processes 

[67]. Efficient management of the generated electrical power 

between these sources and the load is facilitated by power 

electronic devices such as DC-DC converters, inverters, and 

rectifiers, which ensure optimal voltage and current regulation for 

maximum energy utilization. Energy storage units, predominantly 

batteries and supercapacitors, are incorporated to buffer excess 

energy and provide a stable power supply during periods of 

insufficient generation, thereby enhancing system reliability. The 

real-time optimization of energy extraction is achieved through 

AI-enabled control units, typically microcontrollers or DSPs, 

which implement MPPT algorithms to dynamically adjust 

operational parameters. Environmental sensors, including those 

measuring solar irradiance, wind speed, and ambient temperature, 

supply critical data inputs that inform the control logic, enabling 

adaptive system response to fluctuating conditions [66,55,67]. 

Finally, communication and interface modules integrate all 

subsystems, facilitating coordinated operation and data exchange 

to maintain seamless and efficient system performance. 

Fabricating such a system requires careful consideration of 

system efficiency, component reliability, and the integration of AI 

algorithms into the control architecture [88,69]. The hardware 

components must be robust enough to withstand harsh 

environmental conditions, especially in off-grid rural areas where 

solar and wind energy systems are most commonly deployed [70]. 

Furthermore, the AI-based MPPT controller must be capable of 

processing data in real time to make rapid adjustments to the 

system, ensuring that the power output remains close to its 

maximum potential despite fluctuating environmental conditions 

[71,72]. The control strategy is at the heart of the system's 

efficiency. Hybrid solar-wind systems often require a dual-level 

control approach: one for managing the individual energy sources 

(solar and wind) and another for managing the interaction 

between them [73]. This dual-level strategy ensures that each 

source operates at its maximum potential while preventing the 

overloading of either system. Additionally, AI-based algorithms 

provide flexibility in adapting to sudden changes in 

environmental conditions, allowing the system to respond quickly 

to variations in solar irradiance or wind speed. 

3.2 Solar Photovoltaic Panels and Wind Turbines 

The selection of PV panels and wind turbines constitutes a critical 

phase in the design of hybrid renewable energy systems, as these 

components directly impact the overall system efficiency and 

reliability. Optimal component choice must be grounded in a 

detailed assessment of the site-specific resource availability, 

given that the power output from solar and wind installations is 
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highly sensitive to local environmental parameters such as solar 

irradiance and wind velocity [74]. Comprehensive 

characterization of these factors is indispensable to achieving 

consistent year-round performance, maximizing energy yield, and 

minimizing capital and operational expenditures. Figure 6 depicts 

the configuration of a Hybrid Photovoltaic-Wind Microgrid 

System, illustrating the synergistic integration of solar and wind 

resources to improve both energy reliability and sustainability 

[75]. By capitalizing on the complementary generation profiles, 

solar panels predominantly produce electricity during daylight 

hours, and wind turbines generate power during night or overcast 

conditions; this hybrid system ensures a stable and continuous 

energy supply. This feature is particularly advantageous in off-

grid or rural settings where grid access is limited or unavailable 

[74]. The schematic further details key system components, 

including solar PV arrays, wind turbines, charge controllers, 

battery storage units, and inverters, highlighting their 

interconnections within the hybrid microgrid architecture. 

 

 
Figure 6: Hybrid Photovoltaic-Wind Microgrid System [74] 

3.2.1 Solar PV Panels 

Solar energy remains one of the most widely utilized renewable 

energy sources due to its inexhaustible nature and environmental 

sustainability [76]. Nevertheless, the conversion efficiency of PV 

panels is intrinsically linked to the magnitude and consistency of 

local solar irradiance, which fluctuates according to geographic 

location, seasonal variations, and prevailing atmospheric 

conditions [77]. Accurate assessment of the solar resource at a 

given site, typically obtained through satellite remote sensing or 

ground-based meteorological stations, is therefore essential to 

optimize the energy output from PV installations. PV panels are 

manufactured in several types, monocrystalline, polycrystalline, 

and thin-film, each exhibiting distinct efficiency profiles and 

operational characteristics under varying environmental contexts 

[78,79]. Monocrystalline panels, characterized by their high-

purity silicon cells, generally offer superior conversion efficiency 

and are particularly suited for installations where limited space or 

suboptimal irradiance levels are constraints [80]. Polycrystalline 

panels present a more cost-effective alternative, with moderately 

reduced efficiency, making them appropriate for regions with 

moderate solar resource availability. Thin-film panels, noted for 

their lightweight, flexible form factors and aesthetic adaptability, 

cater to niche applications but typically exhibit lower efficiencies 

compared to their crystalline counterparts [81]. 

The selection of PV panels should also account for factors like 

temperature performance, as high temperatures can reduce the 

efficiency of the panels [82]. In regions with high temperatures, it 

may be beneficial to select PV panels that are specifically 

designed to perform better under such conditions. The angle of 

inclination and orientation of the panels also play a significant role 

in maximizing energy capture, and these factors should be 

optimized based on the specific latitude and seasonal variations of 

the location [83]. 

3.2.2 Wind Turbines 

Particularly in areas with consistent and dependable wind 

patterns, wind energy is an essential part of hybrid renewable 

energy systems. By first transforming wind energy into 

mechanical rotational energy, wind turbines use kinetic energy 

from the wind to generate electrical energy via a linked generator 

[84]. The local wind speed profile has a significant impact on a 

wind turbine's power production; therefore careful evaluation and 

analysis of site-specific wind resource data are necessary to 

guarantee the best possible system design and performance. Wind 

resource data is typically obtained from anemometers installed at 

various heights to measure average wind speeds, variability, and 

direction [85,86]. Wind turbines are available in a range of sizes 

and configurations, with the two primary types being horizontal-

axis wind turbines (HAWT) and vertical-axis wind turbines 

(VAWT), each offering distinct operational characteristics and 

suitability depending on the application and site conditions [87]. 

HAWTs are typically more efficient and are preferred for large-

scale installations where higher wind speeds are available. 

VAWTs, on the other hand, are often used in urban or smaller-

scale applications due to their ability to capture wind from any 

direction and their suitability for areas with more turbulent wind 

patterns [88]. 

Operational factors like the cut-out wind speed, the point at which 

the turbine stops producing power to avoid mechanical damage, 

and the cut-in wind speed, the minimum wind velocity necessary 

for the turbine to start producing power, must also be taken into 

consideration when choosing a suitable wind turbine. 

Furthermore, a crucial indicator for assessing turbine performance 

and utilisation is the capacity factor, which is the ratio of actual 

energy produced to the maximum energy output feasible for a 

specific period [85]. To maximise energy capture, ensure 

operating efficiency, and prolong the turbine's service life, it is 
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crucial to choose a wind turbine that complements the local wind 

profile and environmental factors. 

3.3 Hybrid System Considerations 

The secret to optimising energy production in hybrid solar-wind 

systems is choosing the right mix of PV panels and wind turbines 

that work well together [89]. In many places, solar and wind 

energy availability are not synchronised; solar energy is most 

prevalent during the day, whereas wind energy may be more 

powerful at night or in certain seasons. The system may deliver 

more dependable and constant power all day and all year long by 

carefully integrating these two resources [90]. In areas with high 

solar irradiance but limited wind resources, the system may rely 

more heavily on PV panels, with wind turbines providing 

supplementary power during specific seasons or periods of high 

wind activity. Conversely, in regions with moderate or seasonal 

solar irradiance and higher, more consistent wind speeds, the 

hybrid system may use wind turbines as the primary energy 

source, with PV panels contributing during peak sunlight hours 

[91]. A typical hybrid renewable energy system is illustrated in 

Figure 7. 

 
Figure 7: Hybridized Renewable Energy Dynamic Interaction 

System [90,91]  

To ensure optimal energy production, careful site assessment and 

resource mapping are essential. Solar and wind resource data 

should be analyzed together to determine the most effective sizing 

and configuration of both PV panels and wind turbines [89]. This 

analysis helps in selecting components that not only match the 

expected resource availability but also ensure cost-effectiveness 

and system reliability over the long term. 

3.3.1 AI-Embedded MPPT Controllers 

AI-embedded MPPT controllers are at the heart of modern hybrid 

solar-wind systems, enabling efficient energy harvesting through 

real-time, adaptive decision-making [92,93]. These controllers 

integrate AI-based algorithms with microcontrollers or embedded 

AI processors to dynamically adjust the system's operating 

parameters, such as voltage and current, ensuring that both solar 

and wind energy sources are consistently operating at their 

maximum power points. The use of microcontrollers such as 

Arduino or Raspberry Pi, or more specialized embedded AI 

processors, allows for the processing of complex algorithms in 

real-time, which enhances system responsiveness and energy 

efficiency [94]. 

3.3.2 Microcontrollers for AI-Based MPPT Control 

Microcontrollers like Arduino and Raspberry Pi are commonly 

used in hybrid renewable energy systems due to their cost-

effectiveness, ease of use, and versatility [95]. These 

microcontrollers can be programmed to run AI-based MPPT 

algorithms such as ANNs, FLC, or RL, enabling intelligent power 

management in real-time [96]  

1. Arduino, an open-source platform, is widely adopted for MPPT 

applications due to its simplicity, wide availability of libraries, 

and extensive community support [97]. It is particularly suitable 

for small-scale hybrid systems where real-time energy 

optimization is required. Arduino-based controllers can easily 

interface with sensors for measuring environmental parameters 

(e.g., solar irradiance, wind speed, battery voltage) and adjust the 

operation of DC-DC converters or inverters accordingly to track 

the maximum power points of both solar panels and wind turbines 

[98]. 

2. Raspberry Pi, on the other hand, is a more powerful single-

board computer, often used in more sophisticated MPPT 

applications. It provides greater processing power, more memory, 

and advanced communication capabilities compared to Arduino 

[99]. Raspberry Pi can be programmed with Python or other high-

level languages to run AI models for MPPT, enabling faster data 

processing and decision-making. It can also handle more complex 

algorithms, including deep learning models for predictive 

analysis, and supports integration with cloud-based systems for 

real-time monitoring and control [100]. While both platforms are 

effective, the choice between Arduino and Raspberry Pi depends 

on the complexity of the system and the computational 

requirements of the AI algorithms. Arduino is generally sufficient 

for simpler systems with basic MPPT algorithms, while 

Raspberry Pi is ideal for more computationally intensive tasks 

such as the integration of machine learning models or the 

management of multi-source hybrid systems [101]. 

3.3.3 Embedded AI Processors for Advanced MPPT Control 

For more advanced applications, embedded AI processors offer 

enhanced computational power and real-time performance. These 

processors, such as NVIDIA Jetson, Google Coral, or Intel 

Movidius, are designed specifically to run machine learning 

algorithms efficiently in embedded systems [101. These 

processors can handle more complex AI tasks, such as image 

processing, speech recognition, and advanced control algorithms, 

all of which can be applied to MPPT in hybrid solar-wind systems 
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[102]. Embedded AI processors are often chosen when there is a 

need for faster processing speeds, lower latency, and more 

sophisticated control strategies. For example, NVIDIA Jetson 

boards are popular in edge computing applications, where real-

time data analysis and decision-making are critical. They can run 

deep learning models that predict energy availability and optimize 

the MPPT controller's response based on the real-time analysis of 

sensor data, improving the system's efficiency and adaptability 

[103]. One of the key advantages of using embedded AI 

processors is their ability to perform parallel processing. This 

allows for the simultaneous execution of multiple tasks, such as 

real-time data acquisition, environmental condition prediction, 

and control signal generation for the power electronics. As a 

result, these processors can manage the hybrid system more 

effectively, especially in systems that require dynamic 

adjustments based on fluctuating energy inputs from solar and 

wind sources [104]. 

3.3.4 Integration of Sensors and AI-Based MPPT Controllers 

AI-embedded MPPT controllers rely heavily on the integration of 

sensors to monitor the environmental conditions that affect solar 

and wind energy generation. For solar systems, irradiance sensors 

measure the amount of sunlight reaching the PV panels, while 

temperature sensors track the panel's temperature to adjust for 

efficiency loss at high temperatures [104]. Wind systems rely on 

anemometers to measure wind speed and wind direction sensors 

to determine the optimal orientation of the turbine for maximum 

power output [105]. Data from these sensors is fed into the AI-

based MPPT controller, which uses machine learning or rule-

based algorithms to predict the system's optimal performance 

points. The controller then adjusts the operation of power 

converters (such as DC-DC converters) to match these points, 

thereby maximizing energy production [106]. The 

communication between sensors, microcontrollers, and power 

electronics is typically achieved through communication 

protocols like I2C, SPI, or Modbus. 

1. Advantages of AI-Embedded MPPT Controllers 

1. Real-time adaptability: AI-based controllers can adapt to 

changing environmental conditions and predict future 

trends in solar and wind energy availability, leading to 

more efficient energy harvesting. 

2. Improved accuracy and efficiency: AI algorithms can 

more accurately track the maximum power point 

compared to traditional methods, such as Perturb and 

P&O or IC. 

3. Energy prediction: Machine learning models can predict 

future energy production based on historical data, 

allowing for better system management and storage 

optimization. 

4. Fault detection and diagnosis: AI-based systems can 

detect and diagnose issues with the system (e.g., faulty 

sensors or power conversion inefficiencies), leading to 

quicker maintenance and improved reliability. 

2. Disadvantages and Challenges 

1. Computational complexity: Advanced AI algorithms, 

particularly those based on deep learning, require 

significant computational power and memory, which can 

be a limiting factor in resource-constrained 

environments. 

2. Training data requirements: AI models require extensive 

training data to function optimally. This data must 

represent a wide range of environmental conditions, 

which may not always be available. 

3. Cost: AI processors and the hardware required for their 

operation (e.g., sensors and power converters) can 

increase the overall cost of the system, which may be a 

concern for some applications. 

3.3.5 DC-DC Converters and Inverters Optimized for AI-

Driven Controller 

Power conditioning units (PCUs) are essential components in 

hybrid solar-wind systems, as they ensure the smooth conversion, 

regulation, and distribution of electrical energy. These units 

typically consist of DC-DC converters and inverters, which play 

key roles in managing energy flows between the energy 

generation sources (solar and wind) and the storage or grid system 

[108]. In AI-embedded systems, these power conditioning units 

are optimized for enhanced performance through intelligent 

control strategies powered by AI algorithms. 

3.3.5.1 DC-DC Converters 

By controlling the output voltage from sources like solar PV 

panels and wind turbines to levels appropriate for energy storage 

devices or load requirements, DC-DC converters are essential 

components of hybrid renewable energy systems [109]. To 

maintain ideal operating conditions in spite of variations in the 

input power from the renewable sources, these converters work 

by either stepping up (boosting) or stepping down (bucking) the 

voltage [109]. In AI-enhanced MPPT systems, DC-DC converters 

are interfaced with intelligent control units that dynamically 

adjust operational parameters, such as duty cycle and switching 

frequency, in real time to effectively track the maximum power 

point of the PV arrays or wind turbines [110]. Optimization of 

these converters is frequently achieved through advanced AI 

techniques, including RL and FLC, which enable adaptive 

responses to varying environmental conditions like changes in 

solar irradiance or wind speed. By continuously tuning converter 

settings, these AI-driven approaches reduce energy losses and 

ensure the system consistently operates near its peak efficiency 

[111]. 
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AI-based DC-DC converter control offers numerous advantages 

that enhance the overall performance of renewable energy 

systems [109]. One key benefit is adaptive voltage regulation, 

where the AI system can dynamically adjust the converter’s 

parameters in response to fluctuations in environmental 

conditions. This adaptability helps optimize energy efficiency by 

ensuring the converter operates at peak performance under 

varying circumstances [111]. Additionally, AI significantly 

improves MPPT, allowing the converter to more accurately track 

the maximum power point, even in fluctuating environmental 

conditions such as changing solar irradiance or wind speed [96]. 

This leads to more effective energy extraction from both solar and 

wind energy sources. Furthermore, AI-based algorithms help 

reduce power losses by optimizing the converter's operation, 

minimizing inefficiencies typically associated with power 

conversion. As a result, overall system efficiency is enhanced. 

However, the use of AI in DC-DC converter control also presents 

challenges. The complexity of real-time control and the need for 

rapid response times in converters can demand substantial 

computational power from the control unit. AI models capable of 

handling high-frequency updates may require specialized 

embedded processors, which could increase the system's 

hardware requirements [100]. Ensuring that the control unit can 

process data and adjust converter parameters in real time is crucial 

for maintaining optimal system performance. 

3.3.5.2 Inverters 

The DC power produced by wind turbines and solar panels must 

be converted into AC power by inverters so that it can be used 

locally or added to the electrical grid [112]. To preserve grid 

synchronisation, voltage regulation, and current management, the 

conversion process needs to be closely monitored. Intelligent 

control systems that continuously analyse and modify their 

operating settings to maintain ideal power quality are a feature of 

AI-enhanced inverters. AI-driven inverters, such as those with 

FLCs or ANNs incorporated, can modify the AC output's phase, 

frequency, and amplitude to preserve grid stability and boost 

system efficiency. By using machine learning algorithms to 

identify irregularities and anticipate possible breakdowns before 

they happen, these inverters may also carry out predictive 

maintenance [113]. 

AI-based DC-DC converter control offers numerous advantages 

that enhance the overall performance of renewable energy 

systems. One key benefit is adaptive voltage regulation, where the 

AI system can dynamically adjust the converter’s parameters in 

response to fluctuations in environmental conditions [114]. This 

adaptability helps optimize energy efficiency by ensuring the 

converter operates at peak performance under varying 

circumstances. Additionally, AI significantly improves Maximum 

MPPT, allowing the converter to more accurately track the 

maximum power point, even in fluctuating environmental 

conditions such as changing solar irradiance or wind speed. This 

leads to more effective energy extraction from both solar and wind 

energy sources. Furthermore, AI-based algorithms help reduce 

power losses by optimizing the converter's operation, minimizing 

inefficiencies typically associated with power conversion. As a 

result, overall system efficiency is enhanced [115]. 

However, the use of AI in DC-DC converter control also presents 

challenges. The complexity of real-time control and the need for 

rapid response times in converters can demand substantial 

computational power from the control unit. AI models capable of 

handling high-frequency updates may require specialized 

embedded processors, which could increase the system's 

hardware requirements [114,115]. Ensuring that the control unit 

can process data and adjust converter parameters in real-time is 

crucial for maintaining optimal system performance. 

3.3.5.3 Integration of Power Conditioning Units with AI-

Driven Control 

The integration of DC-DC converters and inverters within AI-

embedded hybrid solar-wind systems allows for enhanced energy 

management. By incorporating AI-based controllers into the 

power conditioning units, the system can optimize power flow in 

real-time, ensuring that the hybrid energy system efficiently 

harvests, converts, and distributes energy with minimal losses 

[116]. This integration allows the system to respond dynamically 

to changes in environmental conditions, user demand, or grid 

requirements, resulting in more reliable and cost-effective energy 

production. The AI algorithms employed in these power 

conditioning units are able to process data from various sensors, 

such as solar irradiance sensors, wind speed sensors, and battery 

charge sensors, to make real-time decisions about power 

conversion and distribution [117]. Additionally, these algorithms 

can predict energy availability based on historical data, enabling 

the system to forecast and manage energy storage, grid 

integration, or direct consumption more effectively. 

1. Advantages of AI-Optimized Power Conditioning Units 

1. Enhanced performance: AI optimization allows for real-

time adjustments, improving the overall energy 

conversion efficiency of DC-DC converters and 

inverters. 

2. Improved system responsiveness: AI-driven power 

conditioning units can adapt to fluctuating 

environmental conditions and user energy demands, 

ensuring that the system operates at peak efficiency. 

3. Reduced system maintenance: Predictive maintenance 

capabilities built into AI controllers can detect faults 

early, minimizing downtime and reducing the cost of 

repairs. 
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4. Better grid integration: AI-driven inverters ensure 

seamless integration with the electrical grid, optimizing 

power quality and system stability. 

2. Disadvantages of AI-Optimized Power Conditioning Units 

1. Computational power demands: Real-time AI control of 

power conditioning units requires advanced embedded 

processors with sufficient computational resources, 

which can increase system costs and complexity. 

2. Data dependency: AI algorithms require extensive data 

from sensors and historical performance data to make 

accurate decisions. Insufficient data can lead to 

suboptimal system performance. 

3. Cost: The implementation of AI-driven power 

conditioning units can increase the upfront cost of hybrid 

solar-wind systems, though these costs are often offset 

by long-term improvements in energy efficiency and 

system reliability. 

Table 2: A comparison based on fabrication materials used in 

AI-based MPPT hybrid solar-wind energy systems 
Component Material Used Purpose 

Photovol

taic 
Panels 

Monocrystalline Silicon, 

Polycrystalline Silicon, 
Thin-Film (CdTe, CIGS) 

Converts solar energy into 

electrical power. 
Monocrystalline silicon offers 

higher efficiency and longevity. 

Wind 
Turbine 

Blades 

Fiberglass Reinforced 
Plastic (FRP), Carbon Fiber 

Composites, Aluminum 

Alloys 

Converts wind energy into 
mechanical power. FRP is 

lightweight and durable, while 

carbon fiber increases efficiency. 
Turbine 

Generato

r 

Copper (for windings), 

Aluminum (for housing), 

Permanent Magnets 
(NdFeB) 

Converts mechanical energy 

from wind into electrical energy. 

Neodymium magnets improve 
efficiency. 

DC-DC 

Converte
rs & 

Rectifier

s 

Silicon-based Power 

MOSFETs, Gallium Nitride 
(GaN) or Silicon Carbide 

(SiC) Transistors, Aluminum 

Heat Sinks 

Regulates voltage levels for 

power conversion. GaN and SiC 
transistors offer high efficiency 

and fast switching. 

Inverters Silicon IGBTs (Insulated, 

Gate Bipolar Transistors), 

Copper Wires, Aluminum 
Heat Sinks 

Converts DC power into AC 

power for grid or load 

compatibility. Silicon IGBTs 
improve power handling and 

efficiency. 

Energy 
Storage 

(Battery 

Bank) 

Lithium-Ion (Li-ion), Lead-
Acid, Sodium-Ion or Flow 

Batteries 

Stores excess power for later 
use. Li-ion batteries offer high 

energy density and longevity. 

Microco

ntroller / 

DSP 

Silicon-based Processors, 

Printed Circuit Board (PCB) 

(FR4, Polyimide) 

Executes AI algorithms for 

MPPT control. PCBs provide 

electrical connectivity. 

Sensors Silicon-based 

Photodetectors (for 
irradiance), MEMS 

(Microelectromechanical 

Systems) (for wind speed), 
Thermistors (for 

temperature) 

Measures environmental 

parameters (solar irradiance, 
wind speed, temperature) for AI-

based decision-making. 

Commu
nication 

Modules 

Copper Traces (for wired 
interfaces), RF Components 

(for wireless 

communication), Fiber 
Optic Cables (for high-speed 

data transfer) 

Ensures data exchange between 
components for efficient system 

operation. 

Power 
Manage

ment 

Silicon MOSFETs, 
Supercapacitors, Aluminum 

Heat Sinks 

Controls energy distribution and 
prevents overloading of system 

components. 

Unit 

(PMU) 

Structura
l Frame / 

Mounts 

Aluminum, Galvanized 
Steel, Composite Materials 

Provides structural support for 
PV panels and wind turbines, 

ensuring durability under harsh 

weather conditions. 

 

Table 2 provides a clear comparison of fabrication materials 

based on their function and benefits in the system. 

3.6. Performance Modeling and Evaluation 

Performance modeling of AI-enhanced MPPT systems involves 

both simulation-based analysis and experimental validation to 

quantify improvements in energy harvesting efficiency, response 

time, and system stability [118]. By leveraging advanced 

computational techniques, researchers can assess the 

effectiveness of AI-driven MPPT methods compared to 

conventional algorithms. 

3.6.1 Simulation-Based Performance Evaluation 

Simulation is a crucial step in evaluating AI-based MPPT 

techniques before hardware implementation. Software 

environments such as MATLAB/Simulink, PSCAD, and PSpice 

are commonly used to model hybrid solar wind energy systems 

and assess the effectiveness of AI-driven control strategies [119]. 

The simulation of key components in the hybrid solar-wind 

energy system includes several critical elements to ensure optimal 

energy generation and transfer. PV panels and wind turbines are 

modelled based on empirical equations that govern variations in 

solar irradiance and wind speed. These models help predict how 

the system will behave under different environmental conditions. 

DC-DC converters and inverters are simulated to optimize voltage 

regulation and facilitate efficient energy transfer between the 

energy sources and storage units. The MPPT controllers play a 

crucial role in optimizing power extraction from both the solar 

and wind systems. These controllers are implemented using 

advanced AI techniques such as ANNs, FLC, and RL, which are 

designed to enhance the system's ability to adapt to fluctuating 

environmental factors and maximize energy output [120]. To 

assess the performance of these AI-driven MPPT controllers, 

simulation results are often compared with traditional tracking 

methods like P&O) and IC. This comparison helps highlight the 

improvements in tracking efficiency and dynamic response under 

varying environmental conditions, showcasing the superior 

performance of AI-based methods in real-time power 

optimization. 

3.6.2 Experimental Validation 

To validate the simulation results, prototype AI-embedded hybrid 

solar-wind systems are constructed and tested under real-world 

conditions. The setup includes PV panels and wind turbines, sized 

based on the specific energy potential of the location, ensuring 
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optimal energy capture [121]. AI-embedded MPPT controllers, 

implemented on platforms such as Arduino, Raspberry Pi, or 

FPGA-based systems, are used to optimize power extraction from 

both energy sources in real-time. Sensors play a crucial role in 

measuring key parameters such as solar irradiance, wind speed, 

voltage, and current, feeding this data into the AI controllers for 

dynamic adjustments. A data acquisition system is employed to 

log and analyze the system’s performance, providing critical 

insights into its operation. Experimental validation confirms that 

AI-based MPPT controllers effectively adapt to changing 

environmental conditions, optimizing power output while 

ensuring system stability under varying solar and wind conditions 

[122]. 

3.6.3 Performance Metrics 

The effectiveness of AI-driven MPPT algorithms is evaluated 

using the following key performance indicators (KPIs) as shown 

below: 

1. Tracking Efficiency (ηMPPT) 

Tracking efficiency is an essential parameter used to evaluate how 

well an MPPT algorithm captures the MPP from renewable 

sources like solar and wind energy. It is defined as the proportion 

of the power obtained to the total available power, as represented 

in Equation (4) [123]. 

ηMPPT (%) =  
𝐏𝐞𝐱𝐭𝐫𝐚𝐜𝐭𝐞𝐝

𝐏𝐚𝐯𝐚𝐢𝐥𝐚𝐛𝐥𝐞

 𝑥 100                                       (4) 

Where: Pextraced is the actual power harvested from the energy 

sources, and Pavailable is the theoretical MP that can be extracted 

from the solar or wind energy sources. 

AI-driven MPPT techniques have demonstrated improvements in 

tracking efficiency of up to 25% over conventional methods like 

P&O and IC. This enhancement arises from the AI algorithms’ 

capacity to adapt dynamically to fluctuating environmental 

conditions, enabling more precise and continuous identification of 

the MPP. 

2. Response Time (T_r) 

Response time refers to the duration taken by the MPPT controller 

to converge to the Maximum Power Point (MPP) following a 

sudden change in environmental conditions, such as a shift in 

solar irradiance or wind speed [124]. A quicker response time 

minimizes power loss during transient conditions, leading to 

better overall energy harvesting efficiency. AI-based MPPT 

methods, particularly those utilizing RL and ANNs, can 

significantly reduce response time compared to conventional 

techniques. These AI algorithms rapidly adjust their control 

parameters to track the MPP, even under fluctuating 

environmental conditions. As a result, AI-based MPPT systems 

are able to achieve faster convergence to the MPP, improving 

overall system performance during dynamic conditions [125]. 

3.  System Stability 

In a hybrid renewable energy system, stability refers to the ability 

of the system to maintain consistent voltage and current output 

despite fluctuating environmental conditions [126]. AI-enhanced 

MPPT controllers significantly improve stability compared to 

traditional methods by smoothing out fluctuations, reducing 

voltage spikes, and mitigating current oscillations. This enhanced 

stability is crucial for several reasons [127]: 

1. Preventing Overvoltage or Undervoltage Conditions: 

AI-based MPPT systems effectively prevent voltage 

fluctuations that could damage electrical components or 

shorten the lifespan of batteries and other system parts. 

2. Ensuring Efficient Integration with Batteries or the 

Electrical Grid: Stable voltage and current outputs 

facilitate smoother integration with energy storage 

systems and the electrical grid. This not only enhances 

the overall reliability of the system but also reduces the 

likelihood of system failures. 

AI algorithms continuously monitor and adapt to 

environmental changes, ensuring that the system 

operates within optimal voltage and current ranges. This 

capability is essential for maintaining the long-term 

health and efficiency of the hybrid renewable energy 

system. 

3.7 Comparative Analysis of AI vs. Conventional MPPT 

Methods 

Experimental studies comparing AI-driven MPPT controllers to 

traditional techniques typically yield the following results, as 

shown in Table 3. From Table 3, it was observed that AI-based 

MPPT techniques outperform traditional methods in terms of 

efficiency, speed, and stability. 

Table 3: Comparison of traditional and AI-based MPPT 

Metric P&O  Incremental 

Conductanc 

AI-Based MPPT 

(ANN/FLC/RL) 

Tracking Efficiency 85% - 

90% 

88% - 92% 95% - 98% 

Response Time (s) 1 - 3 s 0.8 - 2 s < 0.5 s 

Voltage 

Fluctuations 

High Medium Low (Stable 

Output) 

Adaptability to 

Rapid Changes 

Low Moderate High 

4.0 Research Findings  

HRES, particularly those integrating solar and wind energy, have 

emerged as promising solutions to address rising global electricity 

demands and reduce environmental impacts, especially in rural 

and off-grid regions. These systems leverage the complementary 

availability of solar irradiance during the day and wind resources 

throughout varying conditions to enhance reliability and reduce 

dependence on fossil fuels. However, the intermittency of 
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renewable sources poses significant operational challenges, 

necessitating the adoption of advanced MPPT techniques to 

optimize energy harvesting. AI-driven MPPT algorithms such as 

ANNs, FLC, and RL demonstrate superior adaptability to 

dynamic environmental conditions through predictive and self-

learning capabilities, enabling real-time optimization and 

improved fault tolerance. Despite these technical advantages, 

practical implementation in resource-limited settings faces 

constraints related to cost, scalability, and infrastructure. High 

initial capital investment in quality components and 

computational platforms, coupled with the need for large datasets 

and technical expertise, can hinder widespread adoption. 

Moreover, scalability is constrained by limited access to modular, 

open-source solutions and the absence of robust local supply 

chains. Effective deployment in rural contexts requires not only 

low-power, embedded AI implementations but also community-

centric training, user-friendly interfaces, and maintenance 

strategies. Nevertheless, with appropriate policy support, pilot 

demonstrations, and public-private collaboration, AI-enhanced 

HRES can offer a transformative, scalable, and sustainable 

pathway to universal energy access, particularly in underserved 

and remote regions. 

5.0 Conclusion and Recommendations 

The integration of AI in HRES, particularly in the optimization of 

MPPT algorithms, offers a promising solution to address the 

challenges posed by the intermittent nature of solar and wind 

resources. AI-based MPPT techniques, including ANNs, FLC, 

RL, significantly improve system performance by enabling 

adaptive, real-time optimization. These methods enhance energy 

efficiency, reduce the impact of environmental fluctuations, and 

ensure more reliable power generation, especially in rural and off-

grid areas where energy access is crucial. The application of AI in 

HRES allows for the dynamic adjustment of operational 

parameters, thus improving the adaptability and responsiveness of 

the system to changes in solar irradiance, wind speed, and other 

environmental variables. This leads to enhanced energy extraction 

and fault detection, ensuring a sustainable and efficient power 

supply. Despite the challenges associated with high 

computational requirements, large data sets, and the complexity 

of system design, the potential benefits of AI-driven optimization 

far outweigh these limitations. Fabrication of AI-enhanced hybrid 

systems requires careful consideration of hardware components 

such as solar panels, wind turbines, energy storage systems, and 

power electronics. The use of microcontrollers and embedded 

processors to implement AI-based MPPT algorithms further 

contributes to real-time decision-making, ensuring the optimal 

functioning of the system. As the demand for clean and reliable 

energy continues to grow, particularly in remote regions, the role 

of AI in improving the efficiency and scalability of hybrid solar-

wind systems will be indispensable. Future research should focus 

on refining AI techniques, developing more efficient hardware 

solutions, and integrating IoT-based monitoring systems to 

further enhance the performance and sustainability of HRES. This 

approach will be instrumental in achieving the global energy 

transition and addressing the challenges of energy access in 

underserved areas. 

5.1 Actionable Recommendations  

1. Promote Low-Cost, AI-Embedded MPPT Solutions 

for Rural Areas: Focus on developing and deploying 

affordable AI-based MPPT algorithms that can operate 

on low-cost microcontrollers. These solutions should be 

optimized for resource-constrained environments, 

offering real-time energy optimization without requiring 

extensive computational resources, which is essential for 

rural electrification projects. 

2. Invest in Capacity Building and Local Technical 

Training: Establish comprehensive training programs 

for local technicians and community members to 

enhance their skills in the installation, maintenance, and 

troubleshooting of AI-enhanced hybrid solar-wind 

systems. This will ensure long-term sustainability and 

reduce reliance on external expertise, empowering local 

communities to manage their renewable energy systems 

effectively. 

3. Support Modular and Scalable Hybrid Systems: 

Encourage the design and deployment of modular, 

scalable hybrid solar-wind systems that can be easily 

expanded and adapted to varying energy demands. This 

approach will ensure that rural and off-grid regions can 

gradually scale their energy infrastructure as their needs 

grow, while also enabling ease of maintenance and 

upgrades. 
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